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Abstract. Action Languages are simple logical formalisms to describe the prop-
erties of a domain and the behavior of an agent and to reason about it. They offer
an elegant solution to the frame problem, but are inapt to reason with norms in
which an obligation deadline may require the agent to adapt its behavior even
though no action occurred. In this paper we extend the Action Language A with
features that allow reasoning about norms and time in dynamic domains. Unlike
previous extensions of Action Languages with norms, our resulting language is
expressive enough to represent and reason with different kinds of obligations with
deadlines that explicitly refer to time, as well as norm violations and even sim-
ple contrary-to-duty obligations resulting from the satisfaction or violation of an
agent’s obligations.

1 Introduction

Open dynamic systems, e.g., systems interacting on the Web, social systems and open
agent communities, have attracted increased attention in recent years. In these systems,
constraints on the behavior of the participants cannot be hard-wired in their specifica-
tion. Instead, desirable properties by normative systems [22,8,7,3,10,35]. Norms, when
used to govern autonomous agents, do not simply act as hard constraints that prevent
the agent from adopting some behavior, but rather provide an indication as to how the
agent should behave which, if not adhered to, can result in the application of sanctions
or other normative effects.

In general, norms can be seen as a specification of what is expected to follow from
a specific state of affairs, e.g., in the form of obligations. There are obligations to-do,
i.e., obligations to execute an action before a deadline—e.g., to reply within one day
after receiving a request, or to register before logging in; obligations to-achieve, i.e.,
obligations to bring about, before the deadline, a state of the world in which some
proposition holds—e.g., to achieve a certain amount of credits within the academic
year; and obligations to-maintain, i.e., obligations to maintain a state of the world in
which some proposition holds until the deadline—e.g., to keep the contract with your
mobile phone company for one year.

One important characteristic of realistic systems of norms is the prominent role of
time and deadlines. Another feature of complex systems of norms are reparative obliga-
tions, or contrary-to-duty obligations [11], i.e., obligations imposed as a consequence
of the violation of some other obligation—e.g., to pay a fine within 10 days if the obli-
gation to return an item by a deadline is violated.

Action Languages [25] are simple logical formalisms for modeling dynamic sys-
tems, with application in Artificial Intelligence, Robotics and Multi-Agent Systems. A



theory of an Action Language describes the properties of a domain and the abilities
of an agent, compactly specifying a transition diagram containing all possible trajec-
tories of the system. Action Languages provide a simple and elegant solution to the
frame problem and enable an agent to encode the applicability of actions, their effects,
describe complex interrelations between fluents and use automated planning to achieve
some goal. Additionally, Action Languages can easily be encoded in the declarative and
well studied paradigm of Answer Set Programming [24]—see, e.g., Coala [23]—thus
benefiting from existing highly efficient answer set solvers, such as clasp.1

The combination of Action Languages and norms has received some attention in the
literature. The line of work in [16,5] extends action language C+ [27] for representing
norms and institutional aspects of normative societies, focusing on power and count-as
rules. In [26], an action language is extended with propositions for specifying defea-
sible authorization and obligation policies, but only obligations to-do are considered.
In [14], the authors introduce the action language InstAL aimed at representing insti-
tutions of agents. This approach uses events as deadlines and can represent obligations
and violations of obligations and even contrary-to-duty obligations, but, just like the
previous ones, it cannot deal with obligations to-achieve or to-maintain. In fact, none
of the previous approaches deals with explicit time, deadlines and the different kinds of
obligations simultaneously.

As it turns out, existing Action Languages, and their extensions, cannot capture
the dynamics of explicit time deadlines because of the fundamental role they assign to
physical actions, whose execution is in general the only way to cause a state change.
With the introduction of norms with explicit time deadlines, and obligations introduced
by the violation or satisfaction of previous obligations, state change needs to also be
triggered literally just by the passage of time, namely by the violation of other obli-
gations, resulting from the expiration of the deadlines, which cannot be encoded in
existing Action Languages.2 The proposal in [15] focuses on policy analysis with the
explicit presence of time, but does not admit obligations to-achieve or to-maintain nor
obligations introduced by the violation or satisfaction of such obligations.

To address this limitation, in this paper, we extend the Action Language A3 [25]
with features that allow reasoning about norms and time in dynamic domains, resulting
in the Normative Action Language AN and a simple query language that can deal with

– obligations to-do, to-achieve and to-maintain;
– deadlines that explicitly refer to time;
– norm violations and satisfactions;
– simple contrary-to-duty obligations on satisfaction/violation of obligations.

At the same time, our approach solves the frame problem also for obligations and
it is more amenable to implementation than other related work based on more com-

1 http://www.cs.uni-potsdam.de/clasp/
2 Note that in the action language of [38] and in C+, state change can also be caused by state

conditions. E.g., for [38] internal actions, so-called triggered actions, can be executed based
only on state conditions. However, this is obviously insufficient for our purposes because ex-
plicit time is not present.

3 We restrict ourselves to A and focus on explaining the technical details related to norms with
explicit time deadlines, leaving more expressive Action Languages for future work.

http://www.cs.uni-potsdam.de/clasp/


plex formalisms (see related work in Sect. 4). Please note that, commonly, in these
formalisms, one deontic modality can be expressed via the other. Due to our simpler
semantics, that is not possible, i.e., we focus on obligations, and leave a more exten-
sive treatment including other deontic modalities (e.g., permission and prohibition) for
future work.

After introducing, in Sect. 2, the syntax and semantics of our normative Action
Language AN , illustrating its use, and presenting some basic properties, in Sect. 3
we present a query language for AN , discuss its complexity and equivalence between
theories in AN , before we conclude in Sect. 4.

2 Normative Action Language AN

We introduce the syntax and semantics ofAN , a simple language for specifying norms,
yet expressive enough to handle different kinds of obligations with deadlines, their sat-
isfaction and violation, and simple contrary-to-duty obligations introduced by the satis-
faction/violation of other obligations. We start from the deterministic Action Language
A [25] whose semantics builds on transition systems in which nodes correspond to
states of the environment and edges correspond to transitions between states and are la-
beled by the action that causes the transition. To capture the meaning of a set of norms,
we extend this transition system by expanding the states with a deontic component, and
by adding a temporal dimension to transitions.

2.1 Syntax

Action Languages provide two disjoint, non-empty sets of function-free first-order atoms4

defined over a given signatureΣ = 〈P, C,V〉 of pairwise disjoint sets of predicates (P),
constants (C) and variables (V): a set A of elementary actions and a set F of physical
fluents. An action is a finite, possibly empty subset of A and can be understood as a
set of elementary actions that are executed simultaneously. If convenient, we denote a
singleton action {α } with the elementary action α. Physical fluents f ∈ F and their
negations ¬f form the set of physical literals, used to represent states of the “world.”

To allow for deontic expressions with explicit time deadlines, we extend the signa-
tureΣ with a set of time points T and a set of time variables Vt, resulting in the deontic
signature Σd = 〈P, C ∪ T ,V ∪ Vt〉. From now on, we assume an arbitrary but fixed
deontic signature Σd.

Both additions to the signature are related to time, and we explain them in the fol-
lowing. The set of time points T represents the time domain, and we assume that T is
a countable subset of non-negative real numbers, including 0, such as the set of natural
numbers N. The set of time variables Vt relates specifically to T in the same standard
way as V relates to C, and we reserve a special time variable now ∈ Vt which we
always associate with the time point representing the current time.

Both T and Vt are used to define time expressions, which allow us to shift time
points into the future by a specific time interval. The set of time expressions T ∗ is

4 In [25], only the propositional case is considered. We use function-free first-order atoms here
to ease the presentation of our formalization of time.



defined as T ∗ = T ∪ {V + c | V ∈ Vt ∧ c ∈ T }.5 Where convenient, we simply ab-
breviate V + 0 by V .

We now introduce deontic literals to represent three types of obligations: 1. obli-
gations to-do, requiring that an action be executed; 2. obligations to-achieve, requiring
that a physical literal become true; 3. obligations to-maintain, requiring that a physical
literal remain true; all three strictly before a specified deadline.6

Definition 1 (Deontic literal). Let A ⊆ A be a non-empty action, l a physical literal,
and t ∈ T ∗, called the deadline. An obligation is of the following three forms:

– obligation to-do Od
t A;

– obligation to-achieve Oa
t l;

– obligation to-maintain Om
t l.

Obligations and their negations form the set of deontic literals. The expression Ot l
represents both Oa

t l and Om
t l.

Note that obligations to-achieve and to-maintain can be understood as dual: the inten-
tion for the former is to require that literal l holds for (at least) one time point strictly in
between the introduction of the obligation and its deadline, and for the latter that l holds
for all time points from the time point of the introduction until (immediately before) the
deadline. This will be accordingly reflected in the semantics later, but does not mean
that we can reduce one to the other as argued later in this section.

A literal is either a physical literal or a deontic literal. A literal is ground if it con-
tains no variables. Literals f and ¬f are called complementary. The literal complemen-
tary to l is denoted by l.

In Action LanguageA, only actions can cause state changes, but the introduction of
obligations with deadlines should allow a state change to be triggered also by the viola-
tion (V) or the satisfaction (S) of obligations, resulting from the expiration of deadlines
for obligations an agent currently has. Deontic events accommodate for that.

Definition 2 (Event). Let d be an obligation. Deontic events are expressions of the
form Vd and Sd. An event is an action or a deontic event.

We recall propositions in A and at the same time extend them to include norms.

Definition 3 (Norm and normative specification). Let e be an event, l a deontic or
physical literal and C a set of literals. A proposition n takes the following form:

e causes l if C . (1)

We say that e is the event of n, l its effect and C its condition. If C is empty, we write n
as (e causes l). If l is a deontic literal, then n is called norm. If l is a physical literal,

5 Here we abuse the set of time points and time variables to also represent time intervals. The
expression V + c always represents the addition of a time interval to a time point, or of two
time intervals.

6 The restriction to non-inclusive deadlines is an arbitrary decision and it would be reasonable
to consider inclusive deadlines instead, or even to introduce both types of deadlines. For sim-
plicity, we consider only non-inclusive deadlines.



then e is an action, and all literals in the condition are physical literals. A proposition
is safe if every variable (different from now) appearing in its effect also appears in its
event or in an obligation within its condition. A normative specificationN is a finite set
of safe propositions of the form (1).

Intuitively, a norm of the form (1) adds or removes the obligation specified by l (depend-
ing on whether the obligation is negated or not) if the event occurs and the condition
is satisfied. Also note that a proposition with physical literal l matches a proposition
in A [25] and the rationale for the applied restrictions is that normative information
should not affect the physical world. This is indeed the case and in line with the idea
that obligations are meant to represent only guidelines of desired behavior for an agent
(including penalties for non-compliance), unlike the line of work in which obligations
can be used to prohibit the execution of an action (see, e.g., [13]). Finally, safeness of
variables occurring in l prevents from the specification of propositions with non-ground
effects.7

Example 4. Consider a set of norms in a university library scenario:

borrow(X) causes Od
now+4 ret(X) if ugrad (2)

borrow(X) causes Od
now+12 ret(X) if grad (3)

renew(X) causes Od
T+4 ret(X) if Od

T ret(X) (4)

renew(X) causes ¬Od
T ret(X) if Od

T ret(X) (5)

VOd
T ret(X) causes Od

now+1 pay (6)

VOd
T ret(X) causes Od

now+1 ret(X) if ugrad (7)

VOd
T ret(X) causes Od

now+3 ret(X) if grad (8)

Norms (2) and (3) specify that borrowing a book creates the obligation to return that
book within the period specified depending on the student’s status (4 and 12 weeks for
undergraduate and graduate students respectively). A book may be renewed for 4 more
weeks, which means updating the obligation with the new deadline (4–5). Finally, a
contrary-to-duty norm specifies that, if a user fails to return the book on time, a fine has
to be paid within one week (6) and the book has to be returned (7–8).

On different domains, an example of a norm with an achievement obligation is that
one has the obligation to achieve 30 credits within the academic year, and an example
of a norm with a maintenance obligation is that one has the obligation to maintain a
contract with a mobile carrier for (at least) 24 months.

enterAcademicYear causes Oa
now+12 sumCredits(30 )

startMobileContract causes Om
now+24 mobileContract

These two norms can also be used to show why it is not possible to only consider
obligations to-achieve or to-maintain and express one using the other. For example, we

7 A less restrictive condition could be applied to propositions whose effect is a physical literal,
but this would only affect the action language which is not our major concern.



could try to represent the obligation to achieve 30 credits within 12 months as failing the
obligation to maintain the sum of achieved credits below 30 during the next 12 months.
However, our language has no means to express to “fail to maintain”. We could try to
express this in our language by ¬Om

now+12 ¬sumCredits(30 ), but, as we will see next,
this corresponds to canceling obligation Om

now+12 ¬sumCredits(30 ). Another option
would be to try to represent the obligation to maintain the mobile contract for 24 months
as the conjunction of obligations to-achieve the mobile contract in each single month:
not only would this be cumbersome, it also would be conceptually counterintuitive since
achievement is intended to change the state such that a certain literal becomes true,
while maintenance requires that the literal is true throughout the considered period of
time.

2.2 Semantics

The semantics of Action Language A is defined as a transition system T modeling
the physical environment. A node σ of T represents a possible physical state and a
transition 〈σ,A, σ′〉 represents that state σ′ can be reached from σ by executing action
A. We extend such T with deontic features and time to define the semantics of normative
specifications as follows. We augment states σ with deontic states δ and we define
when literals are satisfied in such a combined state σ/δ. Next, we present a relation
that captures how a deontic event is caused by either reaching a deadline or due to
an executed action. We proceed by specifying which positive and negative normative
effects are triggered in a state σ/δ, i.e., which obligations are introduced and which
are canceled, when executing an action A at time t w.r.t. N , using a Boolean function
ρA,t() in the former case to avoid introducing meaningless obligations. This enables us
to define a resulting new deontic state and, subsequently, transitions and paths in the
resulting transition system TN .

Let N be a normative specification. The states of the transition system TN consist
of two parts: a set of physical literals representing the physical “world,” and a set of
obligations representing the deontic state of the agent. Additionally, we require that
obligations be part of the state only if they are not immediately satisfied or violated.

Definition 5 (State of TN ). Let σ be a complete and consistent set of ground physical
literals, i.e., for each ground physical fluent f , exactly one of f and ¬f belongs to σ,
and δ a finite set of ground obligations. Then, σ/δ is a state of the transition system
TN if the following conditions are satisfied for every physical literal l and deadline t:
(Oa

t l /∈ δ or l 6∈ σ) and (Om
t l /∈ δ or l ∈ σ). We call σ the physical state and δ the

deontic state.

Note that, unlike σ, δ is not a complete representation of obligations that hold and do
not hold, since it would be impractical to require that obligations d or ¬d occur in δ for
each d due to the usually infinite set of time points T . This is also why we consider a
separate set δ and do not merge δ and σ into one.

To deal with the satisfaction of non-ground literals in a state σ/δ, we introduce a
variable assignment z as a function mapping variables to constants (V → C) and time
variables to time points (Vt → T ). For every time point t, we denote the set of variable



assignments z such that z(now) = t by Zt. Hence, the index t in Zt is not merely
notation, but defines the value that is assigned to now.

For any literal or event λ, we denote by λ|z the literal or event obtained from λ
by substituting every variable according to z, and, subsequently, replacing every time
expression t + c with the time point t′ such that t′ = t + c. E.g., Od

9 ret(book) is the
result of

(
Od

now+4 ret(X )
)∣∣
{X→book ,now→5 } .

Satisfaction for ground literals in a state σ/δ is defined as follows for a physical
literal l and a ground obligation d:

σ/δ |= l iff l ∈ σ ,

σ/δ |= d iff d ∈ δ ,

σ/δ |= ¬d iff d 6∈ δ .

Furthermore, given a variable assignment z and a set of literals L, we define σ/δ |=
L|z iff for l ∈ L, σ/δ |= l|z. Note that the evaluation of deontic literals here is not
an evaluation of a complex modal formula, but rather only used to check if an agent
currently has a certain obligation.

Each transition of TN is a tuple 〈σ/δ, (A, t), σ′/δ′〉, whereA is a ground action and
t ∈ T a time point, meaning that A occurred at time t, causing the transition from state
σ/δ to σ′/δ′. Since the physical effects are independent of the deontic ones, we first
define a relation RN that, for a given N , associates each physical state σ and ground
action A with a new physical state σ′:

〈σ,A, σ′〉 ∈ RN iff σ′ = (σ ∪ EA(σ)) \
{
l | l ∈ EA(σ)

}
,

where EA(σ) stands for the set of all physical literals l|z such that (e causes l if C) ∈ N
and there is z ∈ Zt with σ/δ |= C|z and e|z ⊆ A. If A = ∅, then σ′ = σ, which allows
us to handle deontic updates resulting from deadline expirations at time points in which
no action occurs. Note that the requirement that σ′ be a physical state ensures that
〈σ,A, σ′〉 6∈ RN if A has contradictory effects in state σ.

We proceed by specifying how to obtain a new deontic state. First, we define the
conditions for the occurrence of deontic events, which are satisfactions/violations of
obligations occurring in the current deontic state δ w.r.t. the new physical state σ′.

Definition 6 (Occurrence of deontic event). Let σ/δ be a state of TN , A, B ground
actions, 〈σ,A, σ′〉 ∈ RN and t, t′ time points. The occurrence relation for ground
deontic events under action A at time t, `A,t, is defined for tuples 〈δ, σ′〉 as follows:

〈δ, σ′〉 `A,t VOd
t′ B iff Od

t′ B ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t VOa
t′ l iff Oa

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t SOm
t′ l iff Om

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t SOd
t′ B iff Od

t′ B ∈ δ ∧ t < t′ ∧B ⊆ A
〈δ, σ′〉 `A,t SOa

t′ l iff Oa
t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

〈δ, σ′〉 `A,t VOm
t′ l iff Om

t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

Additionally, εA,t(δ, σ′) = { e | 〈δ, σ′〉 `A,t e }.



The above conditions encode the dynamics of violations and satisfactions, and depend
on the type of obligation involved. The first three represent events generated by a dead-
line expiration. The last three represent events that occur before the expiration of the
respective deadline. Namely, either action B is executed (as part of the set of elemen-
tary actions A) at time t, or a state change affects the literal l to be achieved (or cease
to be maintained). We explain the latter case in more detail for an obligation to-achieve
l. Such an obligation can only be part of a state σ/δ if l ∈ σ. If executing action A
at time t introduces l, i.e., adds it to the new state σ′ (and removes l), then an event
occurs, which (as we will see below) is used to trigger the removal of the corresponding
obligation, but also possibly the introduction of new obligations.

Before defining the normative effects of executing action A at time t in state σ/δ,
we need to introduce an auxiliary function ρA,t(d, σ′) that determines whether, given σ′

with 〈σ,A, σ′〉 ∈ RN , an obligation d, which would be introduced to the new deontic
state, is relevant: ρA,t(d, σ′) = ⊥ if either (1) d is an obligation with deadline t′ ≤ t,
(2) d = Od

t′ B ∧ B ⊆ A, (3) d = Oa
t′ l ∧ l ∈ σ′, or (4) d = Om

t′ l ∧ l ∈ σ′; otherwise
ρA,t(d, σ

′) = >. Condition (1) matches the first part of Def. 6, while (2-4) matches the
second. We thus avoid the introduction of obligations that would be satisfied/violated
immediately, following the rationale to only consider obligations whose satisfaction can
be influenced by the agent’s behavior.

We now define the normative effects of executing an action A at time t in a given
state σ/δ. We say that an effect of a norm is positive (negative) if it is an obligation
(its negation). For each instance of a norm in N we need to evaluate its condition in
σ/δ, check whether the respective event is a subset of action A or a deontic event, and,
in case of the positive effects, check if the effect of the norm is an obligation that is
relevant (or can be safely ignored). The latter and the check for deontic events occur
w.r.t. the new physical state σ′ (obtained by executing A on σ) as already indicated.

Definition 7 (Normative effect). Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , t a time
point and d an obligation. The set of positive normative effects E+

A,t(σ/δ, σ
′) and the

set of negative normative effects E−A,t(σ/δ, σ
′) are defined as follows:

E+
A,t(σ/δ, σ

′) = { (d|z) | (e causes d if C) ∈ N ∧ ∃z ∈ Zt :
σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 `A,t e|z)
∧ ρA,t(d|z, σ′) };

E−A,t(σ/δ, σ
′) = { (d|z) | (e causes ¬d if C) ∈ N ∧ ∃z ∈ Zt :

σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 `A,t e|z) }.

The new deontic state δ′ can now be computed from σ/δ by first detecting which
deontic events occur (and removing the corresponding obligations), then adding the
positive effects of these events and finally removing their negative effects.

Definition 8 (New deontic state). Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , t a time
point and d an obligation. We define G(Vd) = G(Sd) = d, for any set of deontic events
E, G(E) = {G(e) | e ∈ E } and the new deontic state

δ′ =
[
(δ \ G(εA,t(δ, σ′))) ∪ E+

A,t(σ/δ, σ
′)
]
\ E−A,t(σ/δ, σ

′).



Four consequences follow immediately: first, the definition requires that the update of
the physical state has to be computed first, only then can the deontic state be updated;
second, if an obligation is introduced and removed simultaneously by different norms,
then the removal prevails, following a generalization of the in dubio pro reo principle;
third, it may happen that the occurrence of a deontic event removes some obligation,
which is immediately re-introduced in E+

A,t() if a corresponding norm exists, such as
for example if you pay a fine and, at the same time, commit an offense that incurs in the
same penalty; and fourth, the frame problem for obligations is trivially solved in this
equation—whatever appears in δ and is not removed on purpose, persists in δ′.

We show that σ′ and δ′ indeed form a state of TN .

Proposition 9. Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , and δ′ as defined in Def. 8.
Then σ′/δ′ is a state of TN .

Furthermore, considering the definition of deontic events, whenever a deadline of
an existing obligation is reached, a deontic event always takes place. A consequence of
this observation is that a transition from σ/δ must not occur at a time point that exceeds
the deadline of some obligation in δ. We define this time point as the earliest deadline
among the current obligations, or infinity if there are no obligations in δ. Formally,
let d(δ) = { t ∈ T | Ot l ∈ δ or Od

t B ∈ δ }. Then, ltp(δ) = min(d(δ)) if d(δ) 6= ∅
and ltp(δ) = ∞ if d(δ) = ∅. Note that, since δ is assumed finite, this notion of least
time point is well-defined, i.e., if d(δ) 6= ∅, then ltp(δ) ∈ d(δ), which, along with
Proposition 9, allows us to define transitions of TN :

Definition 10 (Transition). A transition of TN is a tuple 〈σ/δ, (A, t), σ′/δ′〉whereA is
a ground action, t is a time point, σ/δ and σ′/δ′ are states of TN such that 〈σ,A, σ′〉 ∈
RN and δ′ is defined as in Def. 8. Moreover, t must satisfy the condition: t = ltp(δ) if
A = ∅, and t ≤ ltp(δ) otherwise.

Example 11. The following are transitions of TN for Example 4 in Sect. 2.1.

〈{ugrad}/∅, (borrow(b), 1), {ugrad}/{Od
5 ret(b)}〉

〈{ugrad}/{Od
5 ret(b)}, (ret(b), 4), {ugrad}/∅〉

〈{ugrad}/{Od
5 ret(b)}, (∅, 5), {ugrad}/{Od

6 pay ,O
d
6 ret(b)}〉.

The tuple 〈{ugrad}/{Od
5 ret(b)}, (ret(b), 8), {ugrad}/∅〉 is not a transition because

ltp({Od
5 ret(b)}) = 5 � 8.

We can show that the transition system TN is deterministic.

Proposition 12. TN is deterministic, i.e., if 〈σ/δ, (A, t), σ′/δ′〉 and 〈σ/δ, (A, t), σ′′/δ′′〉
are transitions of TN , then σ′/δ′ = σ′′/δ′′.

Now, a path is an alternating sequence of states in TN and pairs (A, t) corresponding
to the transitions of TN .



Definition 13 (Path). A path is a sequence of the form

σ0/δ0, (A1, t1), σ1/δ1, . . . , (An, tn), σn/δn , (9)

where σj/δj is a state of TN for every 0 ≤ j ≤ n, 〈σj/δj , (Aj+1, tj+1), σj+1/δj+1〉 is
a transition of TN for every 0 ≤ j < n, and tj < tj+1 for every 1 ≤ j < n.

The last condition states the assumption that the time points in a path are ordered.
The satisfaction of an obligation to-do or to-achieve and the violation of an obliga-

tion to-maintain always indicate some relevant change w.r.t. the previous state.

Proposition 14. Let P be a path of the form (9).

If 〈δj−1, σj〉 `Aj ,tjSO
d
t B, then B 6⊆ Aj−1 and B ⊆ Aj ;

if 〈δj−1, σj〉 `Aj ,tjSO
a
t l, then l /∈ σj−1 and l ∈ σj ;

if 〈δj−1, σj〉 `Aj ,tjVO
m
t l, then l ∈ σj−1 and l /∈ σj .

A symmetric result for the other three deontic events does not hold, simply because
these occur due to a deadline that is reached with the progress of time.

3 Query Language and Equivalence

We now define a query language for AN that can be used to check whether a certain
literal/event occurs in a specific time interval given a normative specification and a
description of the initial state. We consider decidability and complexity of answering
queries. Then, we also discuss equivalence between different normative specifications.

3.1 Syntax of the Query Language

A query language in the case of action languages usually consists of statements describ-
ing initial conditions and statements to query the domain description w.r.t. these initial
conditions. We adapt the notion of axioms for our purpose.

Definition 15 (Axiom). Let N be a normative specification and l a ground physical
literal or a ground obligation. An axiom is of the form initially l. Given a set of axioms
Γ , a physical state σ in TN satisfies Γ if, for every physical literal l, (initially l) ∈ Γ
implies l ∈ σ.

Let δ be the set of obligations d such that (initially d) ∈ Γ . A set of axioms Γ is
an initial specification for N if, for every physical state σ that satisfies Γ , σ/δ forms a
state of TN . Such states σ/δ are called initial w.r.t. Γ .

We thus specify that an initial specification for N aligns with Def. 5, i.e., if Γ contains
an axiom for an obligation to achieve (maintain) l, then it must also contain an axiom
for ¬l (l). Note that a set of axioms may not fully specify the physical state σ, i.e., there
may be several states σ that satisfy Γ , hence several initial states.

An action sequence is a finite sequence ((A1, t1), . . . , (Ak, tk)) such that, for all i
with 1 ≤ i ≤ k, Ai is a non-empty action, and t1, . . . , tk ∈ T with 0 < t1 < · · · < tk.
Given an action sequence, queries are defined as follows:



Definition 16 (Query). Let l be a deontic literal, a deontic event—both without any
occurrence of now—or a physical literal, tα, tβ ∈ T with 0 ≤ tα ≤ tβ , and S an
action sequence. A query is of the form l : [tα, tβ ] : S.

Note that even though our query language is quite simple, it is rather versatile and
allows for expressive queries due to the usage of variables in queries. Not only may
we query for non-ground fluents occurring in a certain time interval, such as whether a
user had some book in her possession, but also whether there occurred any obligation
or violation in a given time interval without having to specify the deadline.

3.2 Semantics of the Query Language

The semantics of the query language is defined w.r.t. paths of the transition system TN .
First, we establish that a path P of the form (9) satisfies an initial specification Γ for
N if σ0/δ0 is an initial state relative to Γ . The idea is to restrict the paths considered to
answer a query to those which match the initial specification.

Next, we link the action sequence in a query to a path by matching each pair (Ai, ti)
in the sequence to exactly one in the path. All other actions in the path have to be empty,
i.e., they occur due to deontic events.

Definition 17 (Satisfiability of an Action Sequence). Let S be an action sequence
(A′1, t

′
1), . . . , (A

′
k, t
′
k) and P a path of the form (9). P satisfies S if there is an injective

mapping µ : {1, . . . , k} 7→ {1, . . . , n} (from S to P ) such that

1. for each i with 1 ≤ i ≤ k, A′i = Aµ(i) and t′i = tµ(i),
2. for each j with 1 ≤ j ≤ n, if µ(i) 6= j for all i with 1 ≤ i ≤ k, then Aj = ∅.

Given the definition of action sequences and paths, if such an injective mapping µ exists,
then it is clearly unique, and so is the path corresponding to an action sequence for a
fixed initial state.

To evaluate whether a certain literal or event holds while executing a sequence of
actions, we need to collect all states that fall into the time interval [tα, tβ ] given in
the query. That is, we collect the state at tα and all the states inside the interval, or
alternatively the final state in the path if the last transition occurs before tα. In the
former case, if there is no action occurring precisely at tα, then we have to consider the
state prior to tα, because that is then the current state at tα. Formally, given a path P of
the form (9) and time points tα ≤ tβ , we define the set

s(P, [tα, tβ ]) = {σi/δi | ti < tα < ti+1} ∪{σi/δi | tα ≤ ti ≤ tβ} ∪{σn/δn | tn < tα}.

Additionally, we want to ensure that only those paths are considered that cover the entire
interval so that we do not miss any states. Therefore, we define that path P reaches time
point t if either tn ≥ t or ltp(δn) =∞.

Finally, we can define how queries are evaluated.

Definition 18 (Query satisfaction). Let Q be a query of the form l : [tα, tβ ] : S, N
a normative specification and Γ an initial specification for N . Q is a consequence of
Γ w.r.t. N , denoted by Γ |=N Q, if, for every path P that satisfies Γ and S and that
reaches tβ , there exists a variable assignment z such that one of these conditions holds:



(a) for some σ/δ ∈ s(P, [tα, tβ ]), σ/δ |= l|z if l is a literal;
(b) for some j with tα ≤ tj ≤ tβ , 〈δj−1, σj〉 `Aj ,tj l|z if l is a deontic event.

Note that our definition of query satisfaction implies that if the action sequence is not
executable, then the query holds automatically for all paths in the transition system
satisfying the conditions, simply because there are none. That is related to the question
of consistent action descriptions [39] and also implicit domain constraints [30,37], and
we refer to the literature for ways to avoid such problems.

Example 19. Recall Example 4 and Γ = {initially ugrad}:

Q1 = VOd
X ret(b) : [1, 8] : 〈(borrow(b) : 1), (ret(b) : 4)〉;

Q2 = Od
5 ret(Y ) : [0, 4] : 〈(borrow(b) : 1)〉;

Q3 = ugrad : [0, 9] : 〈(borrow(b) : 1), (ret(b) : 4)〉.

We obtain that Γ 6|=N Q1, but Γ |=N Q2 and Γ |=N Q3.

We analyze decidability and computational complexity of answering queries where
we measure the input in the size of the set of axioms Γ .

Theorem 20. LetQ be a query,N a normative specification and Γ an initial specifica-
tion forN . If the physical states in TN are finite, then answering Γ |=N Q is decidable
in coNP. If Γ additionally fully specifies σ, then answering Γ |=N Q is in P.

Note that time expressions in the state model do not affect this result nor any potential
implementation, since there are only finitely many obligations in each state, and each
of them simply contains one element from the time domain only.

3.3 Equivalence

Equivalence is an important problem in the area of normative systems. It can be used,
for example, for simplifying normative systems, which usually tend to have redundant
norms. In our approach, we define equivalence of normative specifications w.r.t. the
answers they provide to queries.

Definition 21 (Equivalence). We say that normative specificationsN1,N2 are equiva-
lent if for every set of axioms Γ and every query Q, Γ |=N1 Q if and only if Γ |=N2 Q.

We can show that two normative specifications being equivalent is the same as them
having the same transition system.

Theorem 22. The following conditions are equivalent for any normative specifications
N1, N2:

1) N1, N2 are equivalent.
2) TN1 = TN2 .
3) The sets of paths of TN1

and of TN2
coincide.



A stronger notion of equivalence requires equivalence in the presence of additional
norms, important when modularly analyzing subsets of norms of a larger system. Two
strongly equivalent subsets of a normative specification can be safely replaced by one
another.

Definition 23 (Strong equivalence). We say that normative specifications N1, N2 are
strongly equivalent if for every normative specification N , N1 ∪ N is equivalent to
N2 ∪N .

Strong equivalence implies equivalence but not vice-versa.

Theorem 24. Let N1, N2 be normative specifications. If N1 is strongly equivalent to
N2, then N1 is also equivalent to N2, but the converse implication does not hold.

4 Conclusions

We have extended Action Language A with features that allow reasoning about norms,
time and deadlines in dynamic domains. We have shown how our language can be
used to express norms involving obligations with deadlines that explicitly refer to time
and actions, including obligations to-do, to-achieve and to-maintain but also simple
contrary-to-duty situations on violations and satisfactions of obligations, which pre-
vious action languages and their extensions to norms did not cover. We have defined
a semantics for this language and a simple query language along with its semantics.
Moreover, we studied the complexity and equivalence of normative specifications.

Notably, our framework may serve as a basis for introducing norms to other AI ac-
tion formalisms where norms with explicit time deadlines and such simple contrary-to-
duty obligations have received little consideration so far. Interesting examples include
the Event Calculus [32], the Situation Calculus [34], the Fluent Calculus [36] and exten-
sions of Dynamic Logic [29] that have a solution to the frame problem [40,41,12,18].

Our query language can be used to define interesting planning problems, such as
finding plans which prevent violations, or whose violations are within certain limits.
Additionally, our language has important applicability in the development of electronic
institutions. Electronic institutions are virtual entities that maintain, promote and en-
force a set of norms. They observe agent’s actions to determine norm violations (resp.
satisfactions), e.g., to enforce sanctions (resp. give rewards). Given its formal seman-
tics, and its strong links to dynamic systems,AN can be used as the language to specify
and disseminate the norms and the query language used to determine violations and sat-
isfactions.

Related work on normative systems resulted in frameworks that combine obliga-
tions and time. The proposals in [19,20,9,6], which combine dynamic, deontic and tem-
poral logic, have a rich language, but they have difficulties in dealing with the frame
problem, relevant in the propagation of obligations that have not been fulfilled yet [9],
and with dealing with contrary-to-duty obligations. Also, no axiomatization exists for
the proposals in [19,20], and hence automatic reasoning is not possible, while the ap-
proaches in [9,6] do not deal with actions. In [1], robustness of normative systems is



studied building on temporal logic, but neither deadlines nor contrary-to-duty obliga-
tions are considered. The work in [28] aims at studying the dynamics of normative
violations. However, without an explicit representation of actions, they cannot properly
deal with obligations to-do, nor integrate the normative part of the system with the dy-
namics resulting from the execution of actions provided by Action Languages. In [21]
the OperA framework is introduced for representing agent organizations. The norma-
tive component of this framework is based on an expressive deontic temporal logic.
Although it can deal with contrary-to-duty obligations, it only considers obligations
to-achieve and the deadlines can only be state conditions, therefore not allowing the
representation of explicit time deadlines. Moreover, since the focus of the framework is
the modeling of the organizational structure, non-communicative agent actions are not
explicitly represented, since these are seen as internal to the agents. In [31], the authors
study the interpretation of security policies from the perspective of obligations based on
the concept of accountability, i.e., the property whether all obligations can be fulfilled if
the involved agents are diligent. Again, only obligations to-do are considered. Finally,
in [17] the focus is set on an operational semantics to be able to modify a normative
system during runtime. Yet, there are no time deadlines. Instead, deadlines are state
conditions, which may be an interesting extension of our work, but does not cover the
expressiveness provided by our formalism.

Our work opens several interesting paths for future research. First of all, we would
like to design an implementation. Of course, an encoding in ASP is always possible,
but perhaps more efficient solutions exist. The ideas of our paper may then be consid-
ered to be applied in MAS architectures, such as [33]. We would also like to extend the
language with other deontic constructs such as prohibition and permission. We already
have some notion of prohibition, since an obligation to-maintain ¬l can be seen as a
prohibition to bring about l, and some notion of permission, since the removal of an
obligation to-maintain ¬l can be seen as a weak permission to bring about l. On the
other hand, the counterpart of obligations to-do, forbidden actions, has not been consid-
ered here. Accommodating forbidden actions would require a new normative fluent Ft a
meaning that action a is forbidden until time t. Also interesting is to extend the language
in order to allow complex formulas to appear in the scope of deontic operators, as it is
allowed in [4] or to allow the combination of ontological and non-monotonic languages
[2]. Moreover, we may consider extending our framework to more expressive Action
Languages, more complex deadlines, and actions with different durations.
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