
EVOLP: an Implementation?

Martin Slota1,2 and João Leite2

1 Katedra aplikovanej informatiky, Univerzita Komenského, Slovakia
2 CENTRIA, Universidade Nova de Lisboa, Portugal

Abstract. In this paper we present an implementation of EVOLP un-
der the Evolution Stable Model semantics, based on the transformation
defined in [1]. We also discuss optimizations used in the implementation.

1 Introduction

Evolving Logic Programming (EVOLP) [2] is a generalization of Answer Set
Programming [3] to allow for the specification of a program’s own evolution, in
a single unified way, by permitting rules to indicate assertive conclusions in the
form of program rules. Furthermore, EVOLP also permits, besides internal or
self updates, for updates arising from the environment. The resulting language
provides a simple and general formulation of logic program updating, particularly
suited for Multi-Agent Systems [4,5].

The language of Evolving Logic Programs contains a special predicate
assert/1 whose sole argument is a full-blown rule. Whenever an assertion
assert(r) is true in a model, the program is updated with rule r. The process is
then further iterated with the new program. Whenever the program semantics
allows for several possible program models, evolution branching occurs, and
several evolution sequences are made possible. This branching can be used to
specify the evolution of a situation in the presence of incomplete information.
Moreover, the ability of EVOLP to nest rule assertions within assertions allows
rule updates to be themselves updated down the line. The ability to include as-
sert literals in rule bodies allows for looking ahead on some program changes and
acting on that knowledge before the changes occur. EVOLP also automatically
and appropriately deals with the possible contradictions arising from successive
specification changes and refinements (via Dynamic Logic Programming).

Elsewhere [1], we present a transformation that takes an evolving logic pro-
gram P and a sequence of events E as input and outputs an equivalent normal
logic program PE . The aim of this work is to present an implementation of
EVOLP based on this transformation. The implementation can be easily inte-
grated with other existing multi-agent programming frameworks such as Jason
[6], 2APL [7] and 3APL [8], among others.

? This research has been funded by the European Commission within the 6th Frame-
work Programme project REWERSE number 506779 (cf. http://rewerse.net). It
was also supported by the Slovak Agency for Promotion Research and Development
under the contract No. APVV-20-P04805.

The remainder of this work is structured as follows: in Sect. 2 we introduce
the syntax and semantics of EVOLP and the transformation from [1]; in Sect. 3
we present the implementation; in Sect. 4 we conclude and discuss future work.

2 Preliminaries

First we present the syntax and semantics of Dynamic Logic Programs and
Evolving Logic Programs (EVOLP) and also a simple example that shows how
EVOLP can be used to program a simple agent.

Let L be a set of propositional atoms. A default literal is an atom preceded
by not. A literal is either an atom or a default literal. A rule r is an ordered
pair (H(r), B(r)) where H(r) (dubbed the head of the rule) is a literal and B(r)
(dubbed the body of the rule) is a finite set of literals. A rule with H(r) = L0

and B(r) = {L1, L2, . . . , Ln} will simply be written as

L0 ← L1, L2, . . . , Ln. (1)

If H(r) = A (resp. H(r) = notA) then notH(r) = notA (resp. notH(r) = A).
Two rules r, r′ are conflicting, denoted by r on r′, iff H(r) = notH(r′). We will
say a literal L appears in a rule (1) iff the set {L,notL} ∩ {L0, L1, L2, . . . , Ln}
is non-empty.

A generalized logic program (GLP) over L is a set of rules. A literal appears
in a GLP iff it appears in at least one of its rules.

An interpretation of L is any set of atoms I ⊆ L. An atom A is true in
I, denoted by I |= A, iff A ∈ I, and false otherwise. A default literal notA is
true in I, denoted by I |= notA, iff A /∈ I, and false otherwise. A set of literals
B is true in I iff each literal in B is true in I. Given an interpretation I we
also define I−

def= {notA | A ∈ L \ I} and I∗
def= I ∪ I−. An interpretation M

is a stable model of a GLP P iff M∗ = least(P ∪M−) where least(·) denotes
the least model of the definite program obtained from the argument program by
treating all default literals as new atoms.

Definition 1. A dynamic logic program (DLP) is a sequence of GLPs. Let
P = (P1, P2, . . . , Pn) be a DLP. We use ρ(P) to denote the multiset of all rules
appearing in the programs P1, P2, . . . , Pn and Pi (1 ≤ i ≤ n) to denote the i-th
component of P, i.e. Pi. Given a DLP P and an interpretation I we define

Def(P, I) def= {notA | (@r ∈ ρ(P))(H(r) = A ∧ I |= B(r))} , (2)

Rejj(P, I) def=
{
r ∈ Pj

∣∣ (∃k, r′)
(
k ≥ j ∧ r′ ∈ Pk ∧ r on r′ ∧ I |= B(r′)

)}
, (3)

Rej(P, I) def=
n⋃

i=1

Reji(P, I) . (4)

An interpretation M is a (refined) dynamic stable model of a DLP P iff M∗ =
least([ρ(P) \ Rej(P,M)] ∪Def(P,M)).

Definition 2. Let L be a set of propositional atoms (not containing the predi-
cate assert/1). The extended language Lassert is defined inductively as follows: –
All propositional atoms in L are propositional atoms in Lassert; – If r is a rule
over Lassert then assert(r) is a propositional atom in Lassert; – Nothing else is
a propositional atom in Lassert. An evolving logic program over a language L
is a GLP over Lassert. An event sequence over L is a sequence of evolving logic
programs over L.

Definition 3. An evolution interpretation of length n of an evolving pro-
gram P over L is a finite sequence I = (I1, I2, . . . , In) of interpretations
of Lassert. The evolution trace associated with an evolution interpretation
I of P is the sequence of programs (P1, P2, . . . , Pn) where P1 = P and
Pi+1 = {r | assert(r) ∈ Ii} for all i ∈ {1, 2, . . . , n− 1}.

Definition 4. An evolution interpretation M = (M1,M2, . . . ,Mn) of an
evolving logic program P with evolution trace (P1, P2, . . . , Pn) is an evolu-
tion stable model of P given an event sequence (E1, E2, . . . , En) iff for every
i ∈ {1, 2, . . . , n} Mi is a dynamic stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei).

Example 1. Let’s consider a simple agent that fills glasses with water. If it
receives a request from the environment (e.g. when somebody presses a but-
ton), it starts filling a glass with water. When the glass is full, it stops fill-
ing it. This evolving logic program encodes the described behaviour3: P =
{assert(fill←)← request., assert(notfill←)← full.}. In each step the agent also
receives an event from the environment. Let’s consider a sequence of four events
E = (E1, E2, E3, E4) where E1 = {request← .}, E2 = ∅, E3 = {full← .}
and E4 = ∅. The semantics of P w.r.t. E is a single sequence of four mod-
els (M1,M2,M2,M4) where M1 = {request, assert(fill←)}, M2 = {fill}, M3 =
{fill, full, assert(notfill←)} and M4 = ∅. Its meaning is that in the first step
the agent receives a request in E1, in the second it starts filling the glass, in the
third it receives the signal to stop filling it and in the fourth it does nothing, i.e.
it stops filling it.

Now we will complicate things a bit. Let’s say the water was too
warm and a cooling system was installed into the agent. Its behaviour
also needs to be changed – it should ignore the request button until
the water is cold enough. In EVOLP events can be used to program the
agents. In this particular case the reprogramming is done through the event
E5 = {assert(not assert(fill←)← not cold)← .}. The rule asserted in E5 disal-
lows filling the glass if the agent doesn’t receive a signal that the water is cold
enough. If, for example, the agent further receives the events E6 = {request← .},
E7 = {request← ., cold← .} and E8 = ∅, then the corresponding models will be
M6 = {request}, M7 = {request, cold, assert(fill←)} and M8 = {fill}. In other
words, the first request was ignored while the second was accepted because the
water was already cold.

3 With a small difference: the agent’s reactions are always delayed one step.

The previous example is just a very simple one. The rules can be much more
complex and can be used to capture very complicated behaviours. Evolution
branching may also occur, allowing us to reason about incomplete information.
For more examples the reader is referred to [4,5].

Now we will present the transformation which turns an evolving logic pro-
gram P together with an event sequence E of length n into a normal logic
program PE over an extended language. In [1] we show that there is a one-to-one
correspondence between the stable models of PE and the evolution stable mod-
els of P given E . The computational complexity of the transformation is also
examined there.

First we need to define the extended language over which we will construct
the resulting program:

Ltrans
def=

{
Aj , Aj

neg

∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n
}

∪
{
rej(Aj , i), rej(Aj

neg, i)
∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j

}
∪{u} .

Atoms of the form Aj and Aj
neg in the extended language allow us to compress

the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. 3) into just one interpretation of Ltrans. Atoms of the form rej(Aj , i) and
rej(Aj

neg, i) are needed for rule rejection simulation. The atom u will serve to
formulate constraints needed to eliminate some unwanted models of PE .

To simplify the notation in the transformation’s definition, we’ll use the fol-
lowing conventions: Let L be a literal over Lassert, Body a set of literals over
Lassert and j a natural number. Then:

– If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.
– If L is a default literal notA, then Lj is Aj

neg and Lj
neg is Aj .

– Bodyj = {Lj | L ∈ Body}.

Definition 5. Let P be an evolving logic program and E = (E1, E2, . . . , En)
an event sequence. By a transformational equivalent of P given E we mean the
normal logic program PE = P 1

E ∪P 2
E ∪. . .∪Pn

E over Ltrans, where each P j
E consists

of these six groups of rules:

1. Rewritten program rules. For every rule (L← Body .) ∈ P , P j
E contains

the rule
Lj ← Bodyj ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← Body .) ∈ Ej, P j
E contains

the rule
Lj ← Bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← Body .) over Lassert and all
i ∈ {1, 2, . . . , j − 1} such that (assert(r))i is in the head of some rule of P i

E ,
P j
E contains the rule

Lj ← Bodyj , (assert(r))i,not rej(Lj , i + 1).

4. Default assumptions. For every atom A ∈ Lassert such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules), P j

E also
contains the rule

Aj
neg ← not rej(Aj

neg, 0). (5)

5. Rejection rules. For every rule of P j
E of the form

Lj ← Body ,not rej(Lj , i).4

P j
E also contains the rules

rej(Lj
neg, p)← Body . (6)

rej(Lj , q)← rej(Lj , i). (7)

where:
(a) p ≤ i is the largest index such that P j

E contains a rule with the literal
not rej(Lj

neg, p) in its body. If no such p exists, then (6) is not in P j
E .

(b) q < i is the largest index such that P j
E contains a rule with the literal

not rej(Lj , q) in its body. If no such q exists, then (7) is not in P j
E .

6. Totality constraints. For all i ∈ {1, 2, . . . , j} and every atom A ∈ Lassert

such that P j
E contains rules of the form

Aj ← Bodyp,not rej(Aj , i).

Aj
neg ← Bodyn,not rej(Aj

neg, i).

P j
E also contains the constraint

u← notu,notAj ,notAj
neg.

Let’s take a closer look at PE . It consists of n subprograms P 1
E , P 2

E , . . . , Pn
E .

Each P j
E is used to simulate the j-th evolution step on a separate set of atoms.

In the first evolution step, the only rules that need to be simulated are the rules
of P and E1. They are simulated in the groups of rewritten program rules and
rewritten event rules. Each occurrence of a literal L is written as L1.

In the further steps there are more rules coming into play. In order to simulate
the j-th evolution step, we need to simulate rules of P and Ej and also rules
that could have been asserted in some previous evolution step. So apart from
the rewritten program rules and rewritten event rules we also have assertable
rules – whenever an atom (assert(r))i appears in the head of some rule of P i

E
for some i ∈ {1, 2, . . . , j − 1}, the rule r is included in P j

E in a special rewritten
form. Apart from rewriting each literal L as Lj , we need to make sure the rule
can only be used in case (assert(r))i is actually inferred by some rule of P i

E . This
is achieved by adding (assert(r))i to the body of the rewritten form of r.
4 It can be a rewritten program rule, a rewritten event rule or an assertable rule

(default assumptions never satisfy the further conditions). The set Body contains all
literals from the rule’s body except the not rej(Lj , i) literal.

Fig. 1. Implementation of EVOLP using the transformation

Moreover, each of the mentioned rules contains one extra literal of the form
not rej(Lj , i) in its body that marks it as a rule of level i. Rules with smaller
levels can be rejected by higher level rules in case a conflict between their heads
arises. Rules originating directly from P are of level 1 and rules from Ej are of
level j, the highest level in P j

E . If a rule r was added because (assert(r))i appears
in the head of some rule of P i

E (i.e. the added rule is an assertable rule), it is
marked with level i + 1 because it can be asserted into the (i + 1)-th step.

The other three groups of rules (default assumptions, rejection rules and
totality constraints) are used to simulate the rule rejection mechanism behind
the Refined Dynamic Stable Model semantics for Dynamic Logic Programming
[9]. For more information on the transformation the reader is referred to [1].

3 Implementation of EVOLP

The described transformation, together with an ASP solver, can be used to im-
plement EVOLP. Figure 1 shows how we can do this – we use the transformation
to turn an evolving logic program and a sequence of events into an equivalent
normal logic program. Then we use an ASP solver to find its stable models and
reconstruct the evolution stable models of the original input.

One of the objectives was to make the implementation easy to integrate with
existing multi-agent programming frameworks. Since many of them are written
in Java, EVOLP is also implemented in Java. The implementation, however, uses
Lparse as an external grounder and Smodels5 as an external ASP solver.

Variables are supported and restricted in the same way as in Lparse. More
specifically, every variable must be bound in the positive part of the rule’s body
by some domain predicate6.
5 http://www.tcs.hut.fi/Software/smodels/
6 Domain predicates are those that are defined without recursion or using posi-

tive recursion only. A more detailed description with an example can be found

Fig. 2. Data processing steps

As illustrated in Fig. 2, the input program is processed in three steps, each
implemented by a separate Java class:

1. The input text is parsed and an object representation of the evolving logic
program and events is created.

2. An equivalent normal logic program is produced according to a slightly more
optimized version of the transformation defined in Def. 5. Lparse is used
during the transformation to ground any variables in the input program. A
more detailed description of this step is given below.

3. Lparse and Smodels are executed on the transformed program in a separate
process. The resulting stable models are parsed and evolution stable models
of the original input are reconstructed.

The implementation can currently run as a simple web application7. It can be
used to enter an evolving logic program and compute some or all of its evolution
stable models. Figure 3 shows a screenshot of the web application with the source
and computed evolution stable models of the program from Example 1.

3.1 Implementation of the Transformation

The transformed program is constructed in incrementally and the partially con-
structed program is always used to construct the next part of the result. Let’s
assume we already constructed the programs P 1

E , P 2
E , . . . , P j−1

E . In order to con-
struct P j

E , we need to know what assertable rules to include. These can be
inferred from a grounded version of P 1

E ∪P 2
E ∪ . . .∪P j−1

E . Consequently, P j
E can

be constructed and the process can be iterated.
However, from a practical point of view, it is not possible to use Lparse

to perform the transformation exactly as described. The problem is that the
predicate rej/2 might be a non-domain predicate and still might contain variables

in the Lparse Manual which is included in the Lparse source package available at
http://www.tcs.hut.fi/Software/smodels/.

7 a demo runs at http://centria.di.fct.unl.pt/evolp/

Fig. 3. Screenshot of the web application with the program from Example 1. The
program source is showed in the bottom part and the single evolution stable model is
listed in the upper part.

in some of the second type of rejection rules (7). Fortunately, there is a better
solution of the whole problem – it avoids the mentioned problem and is also
more efficient. Instead of constructing the whole P j

E before grounding it, only
the first three groups of rules can be constructed and changed syntactically so
that the grounder produces an appropriate grounded version. This way we only
ground a part of P j

E instead of grounding P 1
E ∪P 2

E ∪ . . .∪P j
E . On the other hand,

we need to take care of remembering the level of rules when they come out of
the grounder and also their origin – whether they are assertable or not. This can
be performed by adding dummy literals to their bodies before they are given to
Lparse and filtering them out in their grounded versions.

3.2 Optimizations

The presented implementation includes some simple optimizations that prevent
the generation of some unnecessary rules, even though these rules should be

generated according to the formal definition of the transformation. In particular,
we don’t generate all default assumptions as in the definition, we generate a
default assumption (5) only in case the atom Aj

neg appears in a body of some
rewritten program rule, rewritten event rule or assertable rule.

Another optimization involves the second type of rejection rules (7). They
are only generated if they are “reachable”, i.e. a rule rej(Lj , q) ← rej(Lj , i)
is generated only in case PE contains another rejection rule (6) of the form
rej(Lj , p)← Body for some p ≥ i.

There are also other ways of optimizing the resulting program, namely by
sharing rules among evolution steps when possible. This can significantly reduce
the size of the transformed program. We plan to include such an optimization
in later versions of the implementation. Other possible optimizations include
minimizing the amount of data transmitted between Lparse and Java by giving
shorter (numeric) names to predicates and experimenting with modifications of
the transformation that would produce equivalent normal programs that per-
form better with the current answer set solvers. We also plan to design a set of
benchmark tests and perform them with different versions of the implementation.

3.3 Using the Implementation as a Library

Our implementation can easily be used as an external library from Java. If the
binary .jar file from http://centria.di.fct.unl.pt/evolp/ is included in the
CLASSPATH, then the easiest way to use the implementation is to override
the lp.ui.EvolpVarProcessor class. Figure 4 shows a complete source code
of a Java class that uses the library to print out the evolution stable model of
the program from Example 1. It produces the following output containing the
expected evolution stable model:

Evolution stable model no. 1

Step 1: assert(fill <-), request,

Step 2: fill,

Step 3: assert(not fill <-), fill, full,

Step 4:

Step 5: assert(not assert(fill <-) <- not cold),

Step 6: request,

Step 7: assert(fill <-), cold, request,

Step 8: fill,

4 Conclusion and Future Work

We presented an implementation of EVOLP that is based on a transformation
into an equivalent normal logic program. We also discussed some basic optimiza-
tions performed in the implementation.

We are currently extending the implementation to support strong negation,
domain declarations, weight constraints, arithmetic predicates and other practi-
cal features. Apart from that, we plan to examine further optimizations of the
implementation and perform some benchmark tests.

class EvolpTest extends EvolpVarProcessor {
protected void showMessage (S t r ing message) {

// uncomment to see l o g g i n g output
// System . out . p r i n t l n (”−− LOG MESSAGE: ” + message) ;

}

public stat ic void main (St r ing [] a rgs) {
EvolpTest et = new EvolpTest () ;
// s e t the program and even t s from Example 1 as input
et . s e t Input (new Str ingReader (

” a s s e r t (f i l l :−) :− r eque s t . ” +
” a s s e r t (not f i l l :−) :− f u l l . ” +
”newEvents . r eque s t . ” +
”newEvents . ” +
”newEvents . f u l l . ” +
”newEvents . ” +
”newEvents . ” +

” a s s e r t (not a s s e r t (f i l l :−) :− not co ld) . ” +
”newEvents . r eque s t . ” +
”newEvents . r eque s t . co ld . ” +
”newEvents . ”)) ;

// compute e v o l u t i on s t a b l e models and g i v e them one
// by one to the TestConsumer . compute () method
et . computeModels (new TestConsumer ()) ;

}

stat ic class TestConsumer
extends AbstractConsumer<EvolutionStableModel> {
private int count = 0 ;

public void consume (Evolut ionStableModel model) {
count++;
System . out . p r i n t (”Evolut ion s t ab l e model no . ”) ;
System . out . p r i n t l n (count) ;
int s tep = 0 ;
for (StableModel m : model) {

s tep++;
System . out . p r i n t (”Step ” + step + ” : ”) ;
for (LpAtom a : m)

System . out . p r i n t (a . t oS t r i ng () + ” , ”) ;
System . out . p r i n t l n () ;

}
System . out . p r i n t l n () ;

}
}

}

Fig. 4. Simple use of the implementation directly from Java

References

1. M. Slota and J. A. Leite. EVOLP: Transformation-based semantics. In F. Sadri
and K. Satoh, editors, Proceedings of the 8th Workshop on Computational Logic in
Multi-Agent Systems (CLIMA VIII), 2008. In this volume.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In
S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02), volume 2424 of LNAI,
pages 50–61. Springer, 2002.

3. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren
and P. Szeredi, editors, Proceedings of the 7th international conference on logic
programming, pages 579–597. MIT Press, 1990.

4. J. A. Leite and L. Soares. Adding evolving abilities to a multi-agent system. In
K. Satoh K. Inoue and F. Toni, editors, Procs. of the 7th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA VII), volume 4371 of LNAI,
pages 246–265. Springer-Verlag, 2007.

5. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Logic programming for
evolving agents. In M. Klusch, S. Ossowski, A. Omicini, and H. Laamanen, editors,
Proceedings of the 7th International Workshop on Cooperative Information Agents
CIA’03, volume 2782 of LNCS, pages 281–297. Springer, 2003.

6. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John
Wiley & Sons, 2007.

7. M. Dastani, D. Hobo, and J.-J. Ch. Meyer. Practical extensions in agent pro-
gramming languages. In Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’07). ACM Press, 2007.

8. K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming
in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems, 2(4):357–401,
1999.

9. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1):7–32, 2005.

