
Marrying Stable Models with Belief Update

Martin Slota∗ and João Leite†
CENTRIA & Departamento de Informática

Universidade Nova de Lisboa
Quinta da Torre

2829-516 Caparica, Portugal

Abstract

The need for integration of classical logic with nonmonotonic
rules has been gaining importance in areas like the Seman-
tic Web and Open Multi-Agent Systems. A number of re-
searchers addressed this problem by proposing a unified se-
mantics for knowledge bases composed of both first-order
formulae and rules (also called hybrid knowledge bases).
These semantics have matured over the years, but only pro-
vide solutions for the static case when knowledge does not
need to evolve.
In this paper we take a first step towards addressing the dy-
namics of hybrid knowledge bases. Considering the results
from the complementary areas of belief update and rule up-
date, we focus on a scenario where rules can be used to
describe the static background knowledge and reasoning of
an agent, and the information about the current state of the
world, encoded in classical logic, may evolve through time.
We propose an update operator for this scenario and study its
basic properties.
To the best of authors’ knowledge, this is the first time re-
sults of both branches of research on updates are combined to
design an update operator for a hybrid knowledge base.

1. Introduction
In this paper we define an update operator that is suitable
for hybrid theories composed of both Logic Programming
rules, used to represent the general knowledge or behaviour,
and Classical (First-Order) Logic, used to represent evolving
information about the state of a dynamic open world.

In open, distributed and heterogeneous environments,
such as the one envisaged by many Semantic Web re-
searchers, Classical Logic comes as a natural candidate for
knowledge representation. It adopts the open world assump-
tion (OWA), meaning that the knowledge base is, by assump-
tion, potentially not complete, and, therefore, a proposition
p is false only if the knowledge base is inconsistent with p.
This suits well the open nature of such systems where com-
plete knowledge about the environment cannot be assumed.
Classical Logic has decidable as well as tractable fragments,
such as the Description Logics (Baader et al. 2003), that are
commonly used in practical applications.

∗Supported by FCT Scholarship SFRH/BD/38214/2007
†Partially supported by project DiFoS – LogICCC/0001/2007

Logic Programming, based on rules, provides a differ-
ent set of features for knowledge representation, comple-
mentary to those offered by Classical Logic. It features
formal, declarative and well-understood semantics, the sta-
ble model semantics (Gelfond and Lifschitz 1988) and its
tractable approximation, the three-valued well-founded se-
mantics (Gelder, Ross, and Schlipf 1991), being the most
prominent and widely accepted. These semantics adopt the
closed world assumption (CWA), meaning that the knowl-
edge base is assumed to contain complete information. Con-
sequently, a proposition p is considered false whenever it
is not entailed to be true. This type of negation is usually
dubbed default negation or weak negation, to distinguish it
from the classical negation used in Classical Logic.

Incompleteness of information is also a cause for the need
to reason with it under the CWA. In many situations it is de-
sirable to be able to reason in the absence of a piece of infor-
mation, rather than based on explicitly represented informa-
tion only. Furthermore, even in an open environment, some
parts of the knowledge base may be considered as com-
pletely known. Logic programs offer the necessary tools to
reason using CWA and it is widely acknowledged that they
can naturally express policies, preferences, norms and laws.

Since Classical Logic and Logic Programs both offer im-
portant features for knowledge representation in open sys-
tems, their unified use within a single knowledge base is of
great interest. Their semantic integration, however, turned
out to be a difficult task because OWA is largely incompat-
ible with CWA. Many proposals for integrating the two for-
malisms have been proposed in the last decade (see (Hitzler
and Parsia 2009) for a survey). One of the more mature for-
malisms are Hybrid MKNF Knowledge Bases (Motik and
Rosati 2007) where decidability has been achieved through
syntactic restrictions on the kinds of rules that are allowed.
This semantics also has a tractable variant based on the well-
founded semantics that allows for a top-down querying pro-
cedure (Alferes, Knorr, and Swift 2009), making the ap-
proach amenable to practical applications.

However, in many applications knowledge needs to
evolve and the dynamics of hybrid knowledge bases can-
not be addressed by the sole use of formalisms that only
make it possible to represent and reason with static knowl-
edge. The problems associated with knowledge evolution
have been studied extensively by researchers in the field of

belief change. The seminal work in this field is the paper by
Alchourrón, Gärdenfors and Makinson (AGM) (Alchourrón,
Gärdenfors, and Makinson 1985), which proposes a set of
desirable properties for belief change operators, now called
AGM postulates. Subsequently, in (Katsuno and Mendel-
zon 1991), update and revision have been distinguished as
two very related but ultimately different belief change op-
erations. While revision deals with incorporating new in-
formation about a static world, update deals with recording
changes occurring in a dynamic world. The authors also for-
mulated a separate set of postulates for updates.

More recently, when updates were investigated in the con-
text of Logic Programming, it was shown that the above
mentioned postulates and belief change operators are inap-
propriate for Logic Programming (Eiter et al. 2002), lead-
ing to the development of semantics for rule updates based
on different principles and constructions, when compared to
their classical counterparts. While earlier approaches based
on literal inertia (Marek and Truszczynski 1998) proved not
sufficiently expressive for dealing with rule updates, the in-
troduction of the causal rejection principle (Leite 2003) lead
to several approaches, the one exhibiting better properties
being the one presented in (Alferes et al. 2005), not least
because it does not allow any kind of cyclic updates to influ-
ence the semantics of the original rule base.

Combining both branches of research on updates is a very
important, challenging, still unexplored problem.

In this paper, we take the first step in the development of
update operators for hybrid knowledge bases. We choose
a restricted scenario where rules represent static, general
knowledge or behaviour, and first-order logic is used to rep-
resent evolving information about the open and dynamic
environment. The following simple scenario illustrates the
type of situations that our formalism is meant to address:

Example 1 Suppose we have a search engine for finding
ways of transportation. In order to choose from a large
number of possibilities, the engine contains general rules
of thumb, encoded in rules, about what kind of transporta-
tion users prefer in different situations. The system needs
to work with evolving information about the currently avail-
able ways of transportation, represented in an evolving on-
tology, and as time goes, users may also personalise the de-
fault preferences encoded in the rules of the system.

For this scenario, and others in which rules represent static
behaviour and classical logic represents information about
the evolving world, we develop an update operator and ex-
amine its basic properties, showing that it:

• adheres to the principle of primacy of new information
(Dalal 1988), so every model resulting from the update of
a program P by a theory U is a model of U .

• yields the same set of models when updating with equiv-
alent theories.

• generalises the stable model semantics (Gelfond and Lif-
schitz 1988).

• generalises, under certain conditions, the MKNF seman-
tics for hybrid knowledge bases (Motik and Rosati 2007).

• generalises, under certain conditions, the minimal change
update operator for first-order theories (Winslett 1990).

To the best of authors’ knowledge, this is the first time that
an update semantics for a hybrid knowledge base composed
of nonmonotonic rules and a classical theory has been pro-
posed in a single framework.

The remainder of this paper is structured as follows: In
Sect. 2. we introduce the necessary notions that are needed
throughout the rest of the paper. Section 3. contains the def-
inition for our operator while in Sect. 4. we examine its
properties. In Sect. 5. we discuss some further properties of
the operator and related work. We also sketch a number of
possible directions for future work.

2. Preliminaries
In this section we present the necessary preliminaries that we
need to define the hybrid update operator, and discuss some
of the choices we made. As the basis for the formal part of
our investigation, we choose the same notation and notions
as those used for Hybrid MKNF Knowledge Bases (Motik
and Rosati 2007). This makes it possible to treat first-order
formulae and nonmonotonic rules in a unified manner and
easily compare our semantics to the one of Hybrid MKNF.
MKNF. The logic of Minimal Knowledge and Negation as
Failure (MKNF) (Lifschitz 1991) forms the logical basis of
Hybrid MKNF Knowledge Bases. It is an extension of first-
order logic with two modal operators: K and not. In the
following, we follow the presentation of syntax and seman-
tics of this logic as given in (Motik and Rosati 2007). We
assume a function-free first-order syntax extended by the
mentioned modal operators in a natural way. A first-order
atom is a formula P (t1, t2, . . . , tn) where P is a predicate
symbol of arity n and ti are terms. An MKNF formula φ is
a sentence if it has no free variables; φ is ground if it does
not contain variables; φ is first-order if it does not contain
modal operators. By φ[t1/x1, t2/x2, . . . , tn/xn] we denote
the formula obtained by simultaneously replacing in φ all
free occurrences of variable xi by the term ti. A set of first-
order sentences is a first-order theory.

Similarly as in (Motik and Rosati 2007), we only con-
sider Herbrand interpretations in our semantics. Apart from
the constants used in formulae, we assume our signature to
contain a countably infinite supply of constants not occur-
ring in the formulae. The Herbrand Universe of such a sig-
nature is denoted by ∆. The set of all Herbrand first-order
interpretations is denoted by I. An MKNF structure is a
triple 〈I,M,N〉 where I is a Herbrand first-order interpre-
tation and M,N are nonempty sets of Herbrand first-order
interpretations. The satisfiability of an MKNF sentence φ in
〈I,M,N〉 is defined as follows (where p is a ground first-
order atom):

〈I,M,N〉 |= p iff I |= p

〈I,M,N〉 |= ¬φ iff 〈I,M,N〉 6|= φ

〈I,M,N〉 |= φ1 ∧ φ2 iff 〈I,M,N〉 |= φ1 and 〈I,M,N〉 |= φ2

〈I,M,N〉 |= ∃x : φ iff 〈I,M,N〉 |= φ[c/x] for some c ∈ ∆

〈I,M,N〉 |= Kφ iff 〈J,M,N〉 |= φ for all J ∈M
〈I,M,N〉 |= notφ iff 〈J,M,N〉 6|= φ for some J ∈ N

The symbols ∨, ∀ and ⊂ (material implication) are inter-
preted as usual. An MKNF interpretation M is a non-empty

set of Herbrand first-order interpretations over ∆. Let T be
a set of MKNF sentences and M an MKNF interpretation.
M is an S5 model of T , written M |= T , if 〈I,M,M〉 |= φ
for every φ ∈ T and all I ∈ M . If there exists the greatest
S5 model M of T , then it is denoted by mod(T). If T has
no S5 model, then mod(T) denotes the empty set. For all
other sets of formulae, mod(T) stays undefined. M is an
MKNF model of T if M is an S5 model of T and for every
MKNF interpretation M ′) M there is some I ′ ∈ M ′ such
that 〈I ′,M ′,M〉 6|= φ for some φ ∈ T . For a sentence φ,
the S5 models of φ, MKNF models of φ and mod(φ) are
defined as S5 models of {φ }, MKNF models of {φ } and
mod({φ }).
Hybrid MKNF Knowledge Bases. We make use of the
general MKNF framework to give a semantics to hybrid
knowledge bases composed of a first-order theory and a nor-
mal logic program. We define a rule to be any formula of
the following form

K p ⊂ K q1 ∧K q2 ∧ · · · ∧K qk

∧ not s1 ∧ not s2 ∧ · · · ∧ not sl (1)

where k, l are non-negative integers and p, qi, sj are
first-order atoms for any i ∈ { 1, 2, . . . , k } , j ∈
{ 1, 2, . . . , l }. Given a rule r of the form (1), the
following notation is also defined: H(r) = K p,
H∗(r) = p, B+(r) = {K q1,K q2, . . . ,K qk }, B−(r) =
{ not s1,not s2, . . . ,not sl } andB(r) = B+(r)∪B−(r).
H(r) is dubbed the head of r, B+(r) the positive body of r,
B−(r) the negative body of r and B(r) the body of r. An
MKNF rule r is called definite if its negative body is empty;
it is called a fact if its body is empty. A program is a set of
rules and a definite program is a set of definite rules.

As was shown in (Lifschitz 1991), the MKNF semantics
generalises the stable model semantics for logic programs.
In particular, every logic programming rule of the form

p← q1, q2, . . . , qk,not s1,not s2, . . . ,not sl

can be translated into the MKNF formula (1) and the stable
models of a sets of such rules (i.e. of normal logic programs)
directly correspond to MKNF models of the set of translated
rules.

We are now ready to define a hybrid knowledge base and
its semantics.

Definition 2 Let T be a first-order theory andP a program.
The pair 〈T ,P〉 is then called a hybrid knowledge base.

For a rule r with the vector of free variables x, a pro-
gram P , a first-order theory T and the hybrid knowl-
edge base K = 〈T ,P〉, we define: π(r) = (∀x : r),
π(P) = { π(r) | r ∈ P }, π(T) = {Kφ | φ ∈ T } and
π(K) = π(T) ∪ π(P).

We say an MKNF interpretation M is an S5 model of K
if M is an S5 model of π(K). We say M is an MKNF model
of K if M is an MKNF model of π(K).

In this paper, we are not concerned with decidability of
reasoning, so we refrain from introducing a safety condition
on our rules as was done in (Motik and Rosati 2007).

Classical Updates. As a basis for our update operator, we
adopt an update semantics called the Minimal Change Up-
date Semantics (sometimes also called the Possible Models
Approach (PMA)) as defined in (Winslett 1990) for updating
first-order theories. There are a number of reasons for this
choice. First, it satisfies all of Katsuno and Mendelzon’s up-
date postulates (Katsuno and Mendelzon 1991). This means,
for instance, that unlike some other update semantics, such
as the standard semantics (Winslett 1990), it is not sensitive
to syntax of the original theory or of the update. Second, it
is based on an intuitive idea, treating each classical model
of the original theory as a possible world and modifying it
as little as possible in order to become consistent with the
new information. This idea has its roots in reasoning about
action (Winslett 1988) and updates of relational theories
(Winslett 1990). Third, the operator has already been suc-
cessfully used to deal with ABox updates (Liu et al. 2006;
Giacomo et al. 2007).

This semantics uses a notion of closeness of first-order
interpretations w.r.t. a fixed first-order interpretation I . This
notion is based on the set of ground first-order atoms that are
interpreted differently than in I .
Definition 3 Let P be a predicate symbol and I, J be first-
order interpretations. The difference in the interpretation
of P between I and J , written diff (P, I, J), is a relation
containing the set of tuples (P I \ P J) ∪ (P J \ P I).

Given first-order interpretations I, J, J ′, we say that J is
at least as close to I as J ′, denoted by J ≤I J

′, if for every
predicate symbol P it holds that diff (P, I, J) is a subset of
diff (P, I, J ′). We also say that J is closer to I than J ′,
denoted by J <I J

′, if J ≤I J
′ and J ′ �I J .

The minimal change update semantics then keeps those
models of the updating theory that are the closest w.r.t. the
relation ≤I to some model I of the original theory:
Definition 4 Let T ,U be first-order theories, I a first-order
interpretation and M a set of first-order interpretations. We
define:

incorp(U , I) = { J | J |= U
∧ (@J ′ ∈ I)(J ′ |= U ∧ J ′ <I J) }

incorp(U ,M) =
⋃

I∈M

incorp(U , I)

mod(T ⊕ U) = incorp(U ,mod(T))
If mod(T ⊕U) is nonempty, we say it is the minimal change
update model of T ⊕ U .

The previous definition can be naturally generalised to al-
low for sequences of updates. Starting from the models of
the original theory, for each update in the sequence we can
transform the set of models according to the minimal change
update semantics defined above. The resulting set of models
then determines the updated theory. Formally:
Definition 5 Let T be a first-order theory, U a sequence of
n first-order theories (U1,U2, . . . ,Un) and M a set of first-
order interpretations. We inductively define:

incorp(U ,M) = incorp((U2, . . . ,Un), incorp(U1,M))
mod(T ⊕ U) = incorp(U ,mod(T))

If mod(T ⊕U) is nonempty, we say it is the minimal change
update model of T ⊕ U .

3. Hybrid Update Operator
Turning to the formal part of our proposal, our aim is to pro-
pose a semantics for a program P updated by a sequence of
first-order theories (U1,U2, . . . ,Un). We assume program P
to be finite and ground, a common assumption when dealing
with reasoning under the stable model semantics.

We follow a path similar to how the stable models of nor-
mal logic programs were originally defined (Gelfond and
Lifschitz 1988), and start by defining how a definite pro-
gram can be updated by a sequence of first-order theories,
and only afterwards deal with programs with default nega-
tion.

As with the least model of a definite logic program, our
resulting model is the least fixed point of an immediate con-
sequence operator. Our operator is in a way similar to the
usual immediate consequence operator TP commonly used
to draw consequences from a logic program. The crucial dif-
ference between TP and our operator is that in the latter, the
consequences are subsequently updated by the sequence of
theories U using the classical update operator. Formally:

Definition 6 Let P be a finite ground definite program and
U a sequence of first-order theories. We define the operator
TP⊕U for any M ⊆ I as follows:

TP⊕U (M) = mod ({H∗(r) | r ∈ P ∧M |= B(r) } ⊕ U)

An important property of an immediate consequence op-
erator is continuity because it guarantees the existence of a
least fixed point and also provides a way of computing this
least fixed point (using the Kleene Fixed Point Theorem).
The TP⊕U operator satisfies the condition of continuity:

Proposition 7 LetP be a finite ground definite program and
U a sequence of first-order theories. Then TP⊕U is a con-
tinuous function on the complete partial order of all subsets
of I with the least element I.

Now we can define a minimal change dynamic stable
model of P ⊕ U , where P is a definite program, as the least
fixed point of TP⊕U :

Definition 8 Let P be a finite ground definite program and
U a sequence of first-order theories. We say an MKNF in-
terpretation M is a minimal change dynamic stable model
of P ⊕ U if it is the least fixed point of TP⊕U .

Notice that for each definite program P and sequence of
first-order theories U , P⊕U has at most one minimal change
dynamic stable model.

In order to deal with default negation in the bodies of
rules, we use the Gelfond-Lifschitz transformation which
was used to define the stable models of a normal logic pro-
gram (Gelfond and Lifschitz 1988). We do this by defining
the definite program PM which is the result of performing
the Gelfond-Lifschitz transformation on P – rules from P
with a negative body that is in conflict withM are discarded,
while for all the other rules, their negative bodies are dis-
carded. Then PM is updated by U using the above defini-
tion for definite logic programs and if the result is identical

to M , then M is given the status of a minimal change dy-
namic stable model. Hence, the resulting operator can be
used to update an arbitrary normal logic program by a first-
order theory.

Definition 9 Let P be a finite ground program, U a se-
quence of first-order theories and M an MKNF interpreta-
tion. We say M is a minimal change dynamic stable model
of P ⊕U if M is a minimal change dynamic stable model of
PM ⊕ U where

PM =
{
H(r) ⊂ B+(r)

∣∣ r ∈ P ∧M |= B−(r)
}
.

The minimal change dynamic stable models can be used
to define a consequence relation from P ⊕ U where P is a
finite ground program and U a sequence of first-order the-
ories. We offer a definition which adopts a skeptical ap-
proach to inference; credulous and other definitions may be
obtained similarly.

Definition 10 Let P be a finite ground program, U a se-
quence of first-order theories and φ an MKNF sentence. We
say that P ⊕ U entails φ, written P ⊕ U |= φ, if and only
if M |= φ for all minimal change dynamic stable models M
of P ⊕ U .

We now demonstrate the defined update semantics on a
simple example:

Example 11 Using our update operator, we illustrate how
to model one simple situation that may arise in the scenario
described in Example 1. Suppose the system searches only
among flights and trains and by default all flights are pre-
ferred to all trains. Further, exactly one preferred solu-
tion should appear in each minimal change dynamic stable
model. This can be modelled in a logic program P using the
following rules1:

trans(X)← flight(X). (2)
trans(X)← train(X). (3)
prefer(X,Y)← flight(X), train(Y). (4)
1 { take(X) : trans(X) } 1. (5)
← trans(X), trans(Y), pref (X ,Y), take(Y). (6)

Rules (2) and (3) say that flights and trains are ways of
transport. Rule (4) expresses the preference given to flights
over trains and rule (5) makes sure that exactly one way of
transport is present in each stable model of the program.2
Finally, the constraint (6) discards solutions for which there
exists a more preferred alternative.

Now suppose that, initially, there are three flights (f1, f2
and f3) and two trains (t1 and t2) available, i.e.

U1 = {flight(f1) ∧ flight(f2) ∧ flight(f3)
∧ train(t1) ∧ train(t2) } (7)

1For the sake of simplicity, we do not consider different desti-
nations or multiple users of the system. The example is only meant
to illustrate how the different situations may be encoded.

2This rule is written in Lparse notation which can be translated
back into ordinary LP rules. Lparse notation is used by several
solvers for computing the stable models of logic programs, such as
Smodels and Clasp.

P ⊕ U1 has three minimal change dynamic stable models,
namely M1, M2 and M3, such that M1 |= take(f1), M2 |=
take(f2) and M3 |= take(f3).

Next, suppose that we hear on the news that one of the
morning flights, f1 and f2, has been canceled. This is ex-
pressed by the following update:

U2 = {¬flight(f1) ∨ ¬flight(f2) } (8)

The only minimal change dynamic stable model of P ⊕
(U1,U2) is M4 with M4 |= take(f3).

In the sequel, the user notices that train connections are
also available and decides to modify her preferences to no
longer prefer flight f3 over train t1 since this train is very
comfortable and fast:

U3 = {¬prefer(f3, t1) } (9)

After this update, there are two minimal change dynamic sta-
ble models M5,M6 of P ⊕ (U1,U2,U3) such that M5 |=
take(f3) and M6 |= take(t1).

Finally, the danger of a terrorist attack forces the local
airport to cancel all flights:

U4 = { (∀x)(¬flight(x)) } (10)

Consequently, the two minimal change dynamic stable mod-
els of P ⊕ (U1,U2,U3,U4) are M7 and M8 with M7 |=
take(t1) and M8 |= take(t2).

4. Properties and Relations
In this section we investigate a number of formal properties
of the defined operator. The first property guarantees that
every minimal change dynamic stable model of P ⊕ U is a
model of the update U . This is known as the principle of
primacy of new information (Dalal 1988).

Proposition 12 Let P be a finite ground program, U a first-
order theory andM a minimal change dynamic stable model
of P ⊕ U . Then M |= U .

The second property guarantees that our operator is
syntax-independent w.r.t. the updates. This is a desirable
property as it shows that updating by equivalent theories al-
ways produces the same result. It is inherited from the clas-
sical minimal change update operator.

Proposition 13 LetP be a finite ground program, U ,U ′ two
equivalent first-order theories and M an MKNF interpreta-
tion. Then M is a minimal change dynamic stable model of
P ⊕ U if and only if M is a minimal change dynamic stable
model of P ⊕ U ′.

The following proposition relates the hybrid update op-
erator to the static MKNF semantics of hybrid knowledge
bases. It gives sufficient conditions for the static and dy-
namic semantics to coincide. In particular, the sufficient
condition requires that for any set of consequences S of pro-
gram P in the context of a model M , updating S by U has
the same effect as making an intersection of the models of S
with the models of U .

Proposition 14 Let P be a finite ground program, U a first-
order theory and M an MKNF interpretation such that for
every subset S of the set {H∗(r) | r ∈ P ∧M |= B(r) }
the following condition is satisfied:

mod (S ⊕ U) = mod (S ∪ U) .

Then M is an MKNF model of 〈U ,P〉 if and only if M is a
minimal change dynamic stable model of P ⊕ U .

The previous proposition has a number of consequences.
In particular, when U is empty, the required condition is al-
ways satisfied. Hence, the minimal change dynamic stable
models of P ⊕ ∅ are exactly the MKNF models of P and
since the MKNF semantics generalises the stable model se-
mantics (Lifschitz 1991), they also coincide with the stable
models of P .

Corollary 15 Let P be a finite ground program. Then M is
an MKNF model of P if and only if M is a minimal change
dynamic stable model of P ⊕ ∅.
Corollary 16 Let P be a finite ground program. Then M is
a stable model of P if and only if M is a minimal change
dynamic stable model of P ⊕ ∅.

Turning to relations with the minimal change update op-
erator, we show that updating a logic program containing
only facts has the same effect as updating a first-order the-
ory with these facts. Hence, our update operator generalises
the classical minimal change update operator.

Proposition 17 Let P be a finite ground program contain-
ing only facts, U a sequence of first-order theories and M
an MKNF interpretation. Then M is a minimal change
dynamic stable model of P ⊕ U if and only if M is a
minimal change update model of TP ⊕ U where TP =
{ p | K p ∈ P }.

Another property that our operator inherits from the clas-
sical minimal change update operator is that empty theories
in the updating sequence do not influence the resulting mod-
els. Similarly, updating an empty program simply yields the
set of all first-order models of the update. These last two
properties ensure that empty program and updates cannot
influence the resulting models under our update operator.

Proposition 18 Let P be a finite ground program, U =
(U1,U2, . . . ,Un) a sequence of first order theories (where
n ≥ 1) and let U ′ = (U1,U2, . . . ,Ui−1,Ui, ∅,Ui+1, . . . ,Un)
for some i ∈ { 0, 1, 2, . . . , n }. Then an MKNF interpreta-
tion M is a minimal change dynamic stable model of P ⊕U
if and only if M is a minimal change dynamic stable model
of P ⊕ U ′.
Proposition 19 Let U be a first-order theory and M be an
MKNF interpretation. Then M is a minimal change dy-
namic stable model of ∅ ⊕ U if and only if M = mod(U).

5. Discussion and Future Work
As seen, our operator properly generalises the two main in-
gredients that it is motivated by – the stable model semantics
of normal logic programs (Corollary 16) and the classical
minimal change update operator (Proposition 17). We now

briefly discuss its relation to Katsuno and Mendelzon’s pos-
tulates for updates of finite propositional knowledge bases
formulated in (Katsuno and Mendelzon 1991). Each such
knowledge base can be represented by a single propositional
formula and the result of the update can also be represented
as a propositional formula. The eight desirable properties of
an update operator � are as follows:
KM 1: φ � ψ implies ψ.
KM 2: If φ implies ψ, then φ � ψ is equivalent to φ.
KM 3: If both φ and ψ are satisfiable, then φ � ψ is satisfi-
able.
KM 4: If φ1 is equivalent to φ2 and ψ1 is equivalent to ψ2,
then φ1 � ψ1 is equivalent to φ2 � ψ2.
KM 5: (φ � ψ) ∧ χ implies φ � (ψ ∧ χ).
KM 6: If φ � ψ1 implies ψ2 and φ � ψ2 implies ψ1, then
φ � ψ1 is equivalent to φ � ψ2.
KM 7: If for each atom p either φ implies p or φ implies ¬p,
then (φ � ψ1) ∧ (φ � ψ2) implies φ � (ψ1 ∨ ψ2).
KM 8: (φ1 ∨ φ2) � ψ is equivalent to (φ1 � ψ) ∨ (φ2 � ψ).
In order to examine these postulates in our setting, we re-
strict our attention to a finite propositional language. We
also need to define the meaning of a number of notions
used in the postulates. Let P,P1,P2 be logic programs and
µ, µ1, µ2 be propositional formulae. We need to discuss and
define, at least:

1. When does P ⊕ µ1 imply µ2? (used in KM 1 and KM 6)
2. When does P imply µ? (used in KM 2 and KM 7)
3. When is P1 ⊕ µ equivalent to P2? (used in KM 2)
4. When is P satisfiable? (used in KM 3)
5. When is P ⊕ µ satisfiable? (used in KM 3)
6. When is P1 equivalent to P2? (used in KM 4)
7. When is P1 ⊕ µ1 equivalent to P2 ⊕ µ2? (used in KM 4

and KM 6)
8. What is the semantics of (P ⊕ µ1) ∧ µ2? (used in KM 5)
9. What is the semantics of (P ⊕ µ1) ∧ (P ⊕ µ2)? (used in

KM 7)
10. What is the semantics of P1 ∨ P2? (used in KM 8)

Most of these questions can be answered in multiple differ-
ent ways while some of them are hard to provide answers
to at all. In the following, we suggest ways of answering
most of these questions and then analyse whether our oper-
ator satisfies the corresponding postulates.

Question 1. can be answered using the consequence re-
lation from Def. 10. A similar consequence relation can be
defined using stable models to answer question 2. A sim-
ple answer to question 3 is to say that P1 ⊕ µ is equivalent
to P2 if the set of minimal change dynamic stable models
of P1 ⊕ µ is equal to the set of stable models of P2. Re-
garding questions 4. and 5., we can say that P is satisfiable
if it has at least one stable model and, similarly, P ⊕ µ is
satisfiable if it has at least one minimal change dynamic sta-
ble model. Question 6. can be answered similarly as ques-
tion 3. by comparing the sets of minimal change dynamic
stable models of P ⊕ µ1 and P ⊕ µ2. Finally, question
7. can be answered by comparing the sets of stable mod-
els of P1 and P2 or by using strong equivalence (Lifschitz,
Pearce, and Valverde 2001). Providing reasonable answers
to the remaining questions requires more investigation, so,

for now, we do not further examine postulates KM 5, KM 7
and KM 8.

Turning to the rest of the postulates, we note that our op-
erator adheres to KM 1, which was proved in Proposition
12. The same is not the case with postulate KM 2, as shown
by the following counterexample. Consider the program

P : K p ⊂ not q
K q ⊂ not q
K r ⊂ not r,K q

K r ⊂ K p

(11)

and the update µ = r. The only stable model of P is
the maximal S5 model M of { p, r }. Clearly, M |= µ.
But P ⊕ µ has another minimal change dynamic stable M ′,
which is the maximal S5 model of { q, r }. In fact, this be-
haviour is inherited from the stable semantics for logic pro-
grams which does not satisfy the very similar property of
cumulativity (Dix 1995). Hence, it is expectable that KM 2
is never satisfied by any update semantics that properly gen-
eralises the stable model semantics.

A similar situation arises with postulate KM 3, because
the stable model semantics allows to express integrity con-
straints, and these may easily be broken by an update. For
example, the program P = {K p ⊂ not p,K q }, updated
by µ = q, of which both are satisfiable, does not allow for
any minimal change dynamic stable model. It is not clear
how an integrity constraint should be updated because, once
it is a part of the knowledge base, which is assumed to be a
correct representation of the world, it should not be violated,
and no new information should have the power to override it.
Or should it? That is another open research question worth
investigating.

Postulate KM 4 is partially formulated in Proposition 13,
which shows that updating by equivalent theories produces
the same result. In order to formulate the other half, we
would need to prove that updating equivalent logic pro-
grams by the same theory also produces the same result.
For the two notions of program equivalence that we pro-
posed this postulate does not hold. As a counterexample take
P1 = {K p,K q } and P2 = {K p,K q ⊂ K p } which
have the same answer sets and are also strongly equivalent.
An update by µ = ¬p, produces two different results, which
we believe is in accordance with intuitions regarding these
two programs. It may be the case that for different notions
of program equivalence that better suit our scenario, such as
the update equivalence of logic programs proposed in (Leite
2003), this property holds. Further investigation is needed
to answer this question.

Finally, postulate KM 6 is also not satisfied by the opera-
tor. As a counterexample we can take the programP defined
in (11), µ1 = r and µ2 = p ∨ q.

However, the failure of our operator to satisfy many of
Katsuno and Mendelzon’s postulates is not surprising. A
wide range of classical update and revision postulates was
already studied in the context of rule updates, only to find
that many of them were inappropriate for characterising
plausible rule update operators (Eiter et al. 2002). The
search for desirable properties of hybrid update operators is
an interesting future research area.

To conclude, in this paper, to the best of our knowledge,
we proposed the first update operator for hybrid knowledge
bases. We deal with a scenario in which the rules repre-
sent static knowledge, behaviour or norms of the domain or
agent, and the classical theory is used to represent the cur-
rent state of the open and dynamic environment which may
evolve with time. We proved a number of properties of our
operator, among which its relations with the theories it was
based on, such as the stable model semantics (Gelfond and
Lifschitz 1988), the MKNF semantics for hybrid knowledge
bases (Motik and Rosati 2007) and the minimal change up-
date operator for first-order theories (Winslett 1990).

This is only the first step to address updates of hybrid
knowledge bases. There are many ways in which the cur-
rent operator can be generalised, and many properties still
to be examined, among them decidability as well as com-
plexity of reasoning. Since we cannot expect the operator
to perform any better than the stable model semantics and
the classical update operator it is based on, its tractable ap-
proximations need to be defined and examined. The well-
founded semantics for logic programs (Gelder, Ross, and
Schlipf 1991) and its version for hybrid MKNF knowl-
edge bases (Alferes, Knorr, and Swift 2009) constitute cru-
cial starting points. The recent research on ontology evo-
lution in general (see (Flouris et al. 2008) for a survey),
and updates of description logic ABoxes (Liu et al. 2006;
Giacomo et al. 2007) in particular, can help design tractable
update operators for hybrid knowledge bases.

The rule part was assumed to be static in this paper, but in
truly dynamic environments, rules should also be allowed to
be updated. The large body of work on rule updates (Leite
2003; Alferes et al. 2005) needs to be exploited in the at-
tempts to define an update operator that can deal with the
evolution of both rules and the classical part.

While incorporating new knowledge in a knowledge base
is important, the complementary task of removing a certain
piece of information is also important. Hence, hybrid era-
sure operators should be studied and related to hybrid up-
date operators. Again, the classical work on erasure opera-
tors as well as on erasure in description logics (Giacomo et
al. 2007) should be the starting point of this research.

We believe that this new area of research brings exciting
new problems to solve and will bridge a number of existing
research areas. It will certainly find many applications and
perhaps even provide further philosophical insights into how
human knowledge evolves.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. Journal of Symbolic Logic 50(2):510–
530.
Alferes, J. J.; Banti, F.; Brogi, A.; and Leite, J. A. 2005.
The refined extension principle for semantics of dynamic
logic programming. Studia Logica 79(1):7–32.
Alferes, J. J.; Knorr, M.; and Swift, T. 2009. Queries to
hybrid MKNF knowledge bases through oracular tabling.
In Procs. of ISWC 2009, 1–16.

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision. In Procs. of AAAI’88. AAAI Press / The
MIT Press.
Dix, J. 1995. A classification theory of semantics of nor-
mal logic programs: I. strong properties. Fundam. Inform.
22(3):227–255.
Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.
On properties of update sequences based on causal rejec-
tion. Theory and Practice of Logic Programming (TPLP)
2(6):721–777.
Flouris, G.; Makanatas, D.; Kondylakis, H.; Plexousakis,
D.; and Antoniou, G. 2008. Ontology change: classi-
fication and survey. The Knowledge Engineering Review
23(2):117–152.
Gelder, A. V.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Jour-
nal of the ACM 38(3):620–650.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Procs. ICLP’88, 1070–
1080. MIT Press.
Giacomo, G. D.; Lenzerini, M.; Poggi, A.; and Rosati, R.
2007. On the approximation of instance level update and
erasure in description logics. In Procs. of AAAI’07. AAAI
Press.
Hitzler, P., and Parsia, B. 2009. Ontologies and rules. In
Handbook on Ontologies. Springer. 111–132.
Katsuno, H., and Mendelzon, A. O. 1991. On the differ-
ence between updating a knowledge base and revising it.
In Procs. of KR’91. Morgan Kaufmann Publishers.
Leite, J. A. 2003. Evolving Knowledge Bases, volume 81
of Frontiers of Artificial Intelligence and Applications. IOS
Press.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Compu-
tational Logic (TOCL) 2(4):526–541.
Lifschitz, V. 1991. Nonmonotonic databases and epistemic
queries. In Procs. of IJCAI’91.
Liu, H.; Lutz, C.; Miličić, M.; and Wolter, F. 2006. Updat-
ing description logic ABoxes. In Procs. of KR’06. AAAI
Press.
Marek, V., and Truszczynski, M. 1998. Revision program-
ming. Theoretical Computer Science 190(2):241–277.
Motik, B., and Rosati, R. 2007. A faithful integration of
description logics with logic programming. In Procs. of
IJCAI’07.
Winslett, M. 1988. Reasoning about action using a possible
models approach. In Procs. of AAAI’88. AAAI Press / The
MIT Press.
Winslett, M. 1990. Updating Logical Databases. Cam-
bridge University Press.

