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Abstract. Rules in logic programming encode information about mutual inter-
dependencies between literals that is not captured by any of the commonly used
semantics. This information becomes essential as soon as a program needs to be
modified or further manipulated.
We argue that, in these cases, a program should not be viewed solely as the set
of its models. Instead, it should be viewed and manipulated as the set of sets
of models of each rule inside it. With this in mind, we investigate and highlight
relations between the SE-model semantics and individual rules. We identify a
set of representatives of rule equivalence classes induced by SE-models, and so
pinpoint the exact expressivity of this semantics with respect to a single rule. We
also characterise the class of sets of SE-interpretations representable by a single
rule. Finally, we discuss the introduction of two notions of equivalence, both
stronger than strong equivalence [1] and weaker than strong update equivalence
[2], which seem more suitable whenever the dependency information found in
rules is of interest.

1 Motivation

In this paper we take a closer look at the relationship between the SE-model seman-
tics and individual rules of a logic program. We identify a set of representatives of
rule equivalence classes, which we dub canonical rules, characterise the class of sets
of SE-interpretations that are representable by a single rule, and show how the corre-
sponding canonical rules can be reconstructed from them. We believe that these results
pave the way to view and manipulate a logic program as the set of sets of SE-mod-
els of each rule inside it. This is important in situations when the set of SE-models
of the whole program fails to capture essential information encoded in individual rules
inside it, such as when the program needs to be modified or further manipulated. With
this in mind, we briefly discuss two new notions of equivalence, stronger than strong
equivalence [1] and weaker than strong update equivalence [2].

In many extensions of Answer-Set Programming, individual rules of a program are
treated as first-class citizens – apart from their prime role of encoding the answer sets
assigned to the program, they carry essential information about mutual interdependen-
cies between literals that cannot be captured by answer sets. Examples that enjoy these
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characteristics include the numerous approaches that deal with dynamics of logic pro-
grams, where inconsistencies between older and newer knowledge need to be resolved
by “sacrificing” parts of an older program (such as in [3–11]). These approaches look
at subsets of logic programs in search of plausible conflict resolutions. Some of them
go even further and consider particular literals in heads and bodies of rules in order to
identify conflicts and find ways to solve them. This often leads to definitions of new no-
tions which are too syntax-dependent. At the same time, however, semantic properties
of the very same notions need to be analysed, and their syntactic basis then frequently
turns into a serious impediment.

Arguably, a more syntax-independent method for this kind of operations would be
desirable. Not only would it be theoretically more appealing, but it would also allow
for a better understanding of its properties with respect to the underlying semantics.
Moreover, such a more semantic approach could facilitate the establishment of bridges
with the area of Belief Change (see [12] for an introduction), and benefit from the many
years of research where semantic change operations on monotonic logics have been
studied, desirable properties for such operations have been identified, and constructive
definitions of operators satisfying these properties have been introduced.

However, as has repeatedly been argued in the literature [4, 13], fully semantic
methods do not seem to be appropriate for the task at hand. Though their definition
and analysis is technically possible and leads to very elegant and seemingly desirable
properties, there are a number of simple examples for which these methods fail to pro-
vide results that would be in line with basic intuitions [4]. Also, as shown in [13],
these individual problems follow a certain pattern: intuitively, any purely semantic ap-
proach to logic program updates satisfying a few very straightforward and desirable
properties cannot comply with the property of support [14, 15], which lies at the very
heart of semantics for Logic Programs. This can be demonstrated on simple programs
P = { p., q. } andQ = { p., q ← p. } which are strongly equivalent, thus indistinguish-
able from the semantic perspective, but while P does not contain any dependencies, Q
introduces a dependence of atom q upon atom p. This has far-reaching consequences,
at least with respect to important notions from the logic programming point of view,
such as that of support, which are themselves defined in syntactic rather than semantic
terms. For example, if we change our beliefs about p, and come to believe that it is false,
we may expect different beliefs regarding q, depending on whether we start form P , in
which case q would still be true, orQ, in which case q would no longer be true because
it is no longer supported.

We believe that rules indeed contain information that, to the best of our knowledge,
cannot be captured by any of the existing semantics for Logic Programs. In many situ-
ations, this information is essential for making further decisions down the line. There-
fore, any operation on logic programs that is expected to respect syntax-based properties
like support cannot operate solely on the semantic level, but rather has to look inside
the program and acknowledge rules as the atomic pieces of knowledge. At the same
time, however, rules need not be manipulated in their original form. The abstraction
provided by Logic Programming semantics such as SE-models can be used to discard
unimportant differences between the syntactic forms of rules and focus on their seman-
tic content. Thus, while a program cannot be viewed as the set of its models for reasons



described above, it can still be viewed as a set of sets of models of rules in it. Such a shift
of focus should make the approach easier to manage theoretically, while not neglecting
the importance of literal dependencies expressed in individual rules. It could also be-
come a bridge between existing approaches to rule evolution and properties as well as
operator constructions known from Belief Change, not only highlighting the differences
between them, but also clarifying why such differences arise in the first place.

However, before a deeper investigation of such an approach can begin, we do need
to know more about the relation of SE-models and individual rules. This is the aim of
this paper, where we:

– identify a set of representatives of rule equivalence classes induced by the
SE-model semantics, which we dub canonical rules;

– show how to reconstruct canonical rules from their sets of SE-models;
– based on the above, characterise the sets of SE-interpretations that are repre-

sentable by a single rule;
– reveal connections between the set of SE-models of a rule and convex sublattices

of the set of classical interpretations;
– introduce two new notions of equivalence – stronger than strong equivalence [1]

and weaker than strong update equivalence [2] – and argue that they are more
suitable when rules are to be treated as first-class citizens.

We believe that these results provide important insights into the workings of
SE-models with respect to individual rules and will serve as a toolset for manipulating
logic programs at the semantic level.

The rest of this document is structured as follows: We introduce syntax and seman-
tics of logic programs in Sect. 2 while in Sect. 3 we define the set of representatives
for rule equivalence classes and introduce transformations pinpointing the expressivity
of SE-model semantics with respect to individual rules. We also give two characterisa-
tions of the sets of SE-interpretations that are representable by a single rule. In Sect. 4
we discuss the relevance of our results and propose the two new notions of equivalence.

2 Preliminaries

We assume to be given a nonempty, finite set of propositional atoms L from which we
construct both propositional formulae and rules.

Propositional formulae are formed in the usual way from propositional atoms in L,
the logical constants> an⊥, and the connectives ¬,∧,∨,⊂,⊃,≡. An interpretation is
any subset of L, naturally inducing a truth assignment to all propositional formulae. If
a formula φ is true under interpretation I , we also say that I is a model of φ. The set of
all interpretations is denoted by I.

Similarly as for propositional formulae, the basic syntactic building blocks of rules
are propositional atoms from L. A negative literal is an atom preceded by ∼, denoting
default negation. A literal is either an atom or a negative literal. As a convention, double
default negation is absorbed, so that ∼∼p denotes the atom p. Given a set of literals X ,
we introduce the following notation:

X+ = { p ∈ L | p ∈ X } X− = { p ∈ L | ∼p ∈ X } ∼X = { ∼p | p ∈ X ∩ L }



Given natural numbers k, l,m, n and atoms p1, . . . , pk, q1, . . . , ql, r1, . . . , rm,
s1, . . . , sn, we say the pair of sets of literals

〈{ p1, . . . , pk,∼q1, . . . ,∼ql } , { r1, . . . , rm,∼s1, . . . ,∼sn }〉 (1)

is a rule. The first component of a rule (1) is denoted by H(r) and the second by B(r).
We say H(r) is the head of r, H(r)+ is the positive head of r, H(r)− is the negative
head of r, B(r) is the body of r, B(r)+ is the positive body of r and B(r)− is the
negative body of r. Usually, for convenience, instead of a rule r of the form (1) we
write the expression

p1; . . . ; pk;∼q1; . . . ;∼ql ← r1, . . . , rm,∼s1, . . . ,∼sn. (2)

or, alternatively, H(r)+;∼H(r)− ← B(r)+,∼B(r)−. A rule is called positive if its
head and body contain only atoms. A program is any set of rules.

We also introduce the following non-standard notion which we will need throughout
the rest of the paper:

Definition 1 (Canonical Tautology). Let pε be an arbitrary but fixed atom. The canon-
ical tautology, denoted by ε, is the rule pε ← pε.

In the following, we define two semantics for rules. One is that of classical models,
where a rule is simply treated as a classical implication. The other is based on the logic
of Here-and-There [16, 17], more accurately on a reformulation of the here-and-there
semantics, called SE-model semantics, defined for rules [18]. This second semantics is
strictly more expressive than both classical models and the stable model semantics [19].

We introduce the classical model of a rule by translating the rule into a proposi-
tional formula: Given a rule r of the form (2), we define the propositional formula r as∨
{ p1, . . . , pk,¬q1, . . . ,¬ql } ⊂

∧
{ r1, . . . , rm,¬s1, . . . ,¬sn }. Note that

∨
∅ ≡ ⊥

and
∧
∅ ≡ >. A classical model, or C-model, of a rule r is any model of the formula r.

Given a rule r and an interpretation J , we define the reduct of r relative to J ,
denoted by rJ , as follows: If some atom from H(r)− is false under J or some atom
from B(r)− is true under J , then rJ is ε; otherwise rJ is H(r)+ ← B(r)+. Intuitively,
the reduct rJ is the positive part of a rule r that “remains” after all its negative literals are
interpreted under interpretation J . The two conditions in the definition check whether
the rule is satisfied based on the negative atoms in its head and body, interpreted under
J . If this is the case, the reduct is by definition the canonical tautology. If none of
these conditions is satisfied, the positive parts of r are kept in the reduct, discarding the
negative ones.

An SE-interpretation is a pair of interpretations 〈I, J〉 such that I is a subset of J .
The set of all SE-interpretations is denoted by ISE. We say that an SE-interpretation
〈I, J〉 is an SE-model of a rule r if J is a C-model of r and I is a C-model of rJ .
The set of all SE-models of a rule r is denoted by modSE (r). The SE-models of a
program P are the SE-models of all rules in P . A set of SE-interpretations S is called
rule-representable if there exists a rule r such that S = modSE (r).

We say that a rule r is SE-tautological if modSE (r) = ISE. Note that the canonical
tautology ε (c.f. Definition 1) is SE-tautological. We say that two rules r, r′ are strongly
equivalent, or SE-equivalent, if they have the same set of SE-models.



3 Rule Equivalence Classes and their Canonical Rules

Our goal is to find useful insights into the inner workings of the SE-model semantics
with respect to single rules. In order to do so, we first introduce a set of representatives
of rule equivalence classes induced by SE-models and show how the representative of a
class can be constructed given one of its members. Then we show how to reconstruct a
representative from the set of its SE-models. Finally, we pinpoint the conditions under
which a set of SE-interpretations is rule-representable.

3.1 Canonical Rules

We start by bringing out simple but powerful transformations that simplify a given rule
while preserving its SE-models. Most of these results have already been formulated in
various ways [20, 2, 21]. The following result summarises the conditions under which a
rule is SE-tautological:

Lemma 2 (Consequence of Theorem 4.4 in [2]; part i) of Lemma 2 in [21]). Let H
and B be sets of literals and p be an atom. Then a rule is SE-tautological if it takes any
of the following forms:

p;H ← p,B. H;∼p← B,∼p. H ← B, p,∼p.

Thus, repeating an atom in different “components” of the rule frequently causes the rule
to be SE-tautological. In particular, this happens if the same atom occurs in the positive
head and positive body, or in the negative head and negative body, or in the positive and
negative bodies of a rule. How about the cases when the head contains a negation of a
literal from the body? The following Lemma clarifies this situation:

Lemma 3 (Consequence of (3) and (4) in Lemma 1 in [21]). Let H and B be sets of
literals and L be a literal. Then rules of the following forms are SE-equivalent:

H;∼L← L,B. H ← L,B. (3)

So if a literal is present in the body of a rule, its negation can be removed from the head.
Until now we have seen that a rule r that has a common atom in at least two of the

setsH(r)+∪H(r)−,B(r)+ andB(r)− is either SE-tautological, or SE-equivalent to a
rule where the atom is omitted from the rule’s head. So such a rule is always SE-equiv-
alent either to the canonical tautology ε, or to a rule without such repetitions. Perhaps
surprisingly, repetitions in positive and negative head cannot be simplified away. For
example, over the alphabet Lp = { p }, the rule “p;∼p← .” has two SE-models, 〈∅, ∅〉
and 〈{ p } , { p }〉, so it is not SE-tautological, nor is it SE-equivalent to any of the facts
“p.” and “∼p.”. Actually, it is not very difficult to see that it is not SE-equivalent to
any other rule, even over larger alphabets. So the fact that an atom is in both H(r)+

and H(r)− cannot all by itself imply that some kind of SE-models preserving rule
simplification is possible.

The final Lemma reveals a special case in which we can eliminate the whole nega-
tive head of a rule and move it to its positive body. This occurs whenever the positive
head is empty.



Lemma 4 (Related to Corollary 4.10 in [20] and Corollary 1 in [21]). Let H− be
a set of negative literals, B be a set of literals and p be an atom. Then rules of the
following forms are SE-equivalent:

∼p;H− ← B. H− ← p,B.

Armed with the above results, we can introduce the notion of a canonical rule.
Each such rule represents a different equivalence class on the set of all rules induced
by the SE-model semantics. In other words, every rule is SE-equivalent to exactly
one canonical rule. After the definition, we provide constructive transformations which
show that this is indeed the case. Note that the definition can be derived directly from
the Lemmas above:

Definition 5 (Canonical Rule). We say a rule r is canonical if either it is ε, or the
following conditions are satisfied:

1. The sets H(r)+ ∪H(r)−, B(r)+ and B(r)− are pairwise disjoint.
2. If H(r)+ is empty, then H(r)− is also empty.

This definition is closely related with the notion of a fundamental rule introduced
in Definition 1 of [21]. There are two differences between canonical and fundamental
rules: (1) a fundamental rule must satisfy condition 1. above, but need not satisfy con-
dition 2.; (2) no SE-tautological rule is fundamental. As a consequence, fundamental
rules do not cover all rule-representable sets of SE-interpretations, and two distinct fun-
damental rules may still be SE-equivalent. From the point of view of rule equivalence
classes induced by SE-model semantics, there is one class that contains no fundamen-
tal rule, and some classes contain more than one fundamental rule. In the following we
show that canonical rules overcome both of these limitations of fundamental rules. In
other words, every rule is SE-equivalent to exactly one canonical rule. To this end, we
define constructive transformations that directly show the mutual relations between rule
syntax and semantics.

The following transformation provides a direct way of constructing a canonical rule
that is SE-equivalent to a given rule r.

Definition 6 (Transformation into a Canonical Rule). Given a rule r, by can(r) we
denote a canonical rule constructed as follows: If any of the sets H(r)+ ∩ B(r)+,
H(r)− ∩B(r)− and B(r)+ ∩B(r)− is nonempty, then can(r) is ε. Otherwise, can(r)
is of the form H+;∼H− ← B+,∼B−. where

– H+ = H(r)+ \B(r)−.
– If H+ is empty, then H− = ∅ and B+ = B(r)+ ∪H(r)−.
– If H+ is nonempty, then H− = H(r)− \B(r)+ and B+ = B(r)+.
– B− = B(r)−.

Correctness of the transformation follows directly from Lemmas 2 to 4.

Theorem 7. Every rule r is SE-equivalent to the canonical rule can(r).

What remains to be proven is that no two different canonical rules are SE-equiv-
alent. In the next Subsection we show how every canonical rule can be reconstructed
from the set of its SE-models. As a consequence, no two different canonical rules can
have the same set of SE-models.



3.2 Reconstructing Rules

In order to reconstruct a rule r from the set S of its SE-models, we need to understand
how exactly each literal in the rule influences its models. The following Lemma pro-
vides a useful characterisation of the set of countermodels of a rule in terms of syntax:

Lemma 8 (Different formulation of Theorem 4 in [21]). Let r be a rule. An SE-in-
terpretation 〈I, J〉 is not an SE-model of r if and only if the following conditions are
satisfied:

1. H(r)− ∪B(r)+ ⊆ J and J ⊆ L \B(r)−.
2. Either J ⊆ L \H(r)+ or both B(r)+ ⊆ I and I ⊆ L \H(r)+.

The first condition together with the first disjunct of the second condition hold if
and only if J is not a C-model of r. The second disjunct then captures the case when I
is not a C-model of rJ .

If we take a closer look at these conditions, we find that the presence of a negative
body atom in J guarantees that the first condition is falsified, so 〈I, J〉 is a model of
r, regardless of the content of I . Somewhat similar is the situation with positive head
atoms – whenever such an atom is present in I , it is also present in J , so the second
condition is falsified and 〈I, J〉 is a model of r. Thus, if S is the set of SE-models of a
rule r, then every atom p ∈ B(r)− satisfies

p ∈ J implies 〈I, J〉 ∈ S (CB− )

and every atom p ∈ H(r)+ satisfies

p ∈ I implies 〈I, J〉 ∈ S . (CH+ )

If we restrict ourselves to canonical rules different from ε, we find that these conditions
are not only necessary, but, when combined properly, also sufficient to decide what
atoms belong to the negative body and positive head of the rule.

For the rest of this Subsection, we assume that r is a canonical rule different from
ε and S is the set of SE-models of r. Keeping in mind that every atom that satisfies
condition (CB− ) also satisfies condition (CH+ ) (because I is a subset of J), and that
B(r)− is by definition disjoint from H(r)+, we arrive at the following results:

Lemma 9. An atom p belongs toB(r)− if and only if for all 〈I, J〉 ∈ ISE, the condition
(CB− ) is satisfied. An atom p belongs to H(r)+ if and only if it does not belong to
B(r)− and for all 〈I, J〉 ∈ ISE, the condition (CH+ ) is satisfied.

As can be seen from Lemma 8, the role of positive body and negative head atoms
is dual to that of negative body and positive head atoms. Intuitively, their absence in
J , and sometimes also in I , implies that 〈I, J〉 is an SE-model of r. It follows from
the first condition of Lemma 8 that if p belongs to H(r)− ∪B(r)+, then the following
condition is satisfied:

p /∈ J implies 〈I, J〉 ∈ S . (CH− )



Furthermore, the second condition in Lemma 8 implies that every p ∈ B(r)+ satisfies
the following condition:

p /∈ I and J ∩H(r)+ 6= ∅ implies 〈I, J〉 ∈ S . (CB+ )

These observations lead to the following results:

Lemma 10. An atom p belongs to B(r)+ if and only if for all 〈I, J〉 ∈ ISE, the condi-
tions (CH− ) and (CB+ ) are satisfied. An atom p belongs to H(r)− if and only if it does
not belong to B(r)+ and for all 〈I, J〉 ∈ ISE, the condition (CH− ) is satisfied.

Together, the two Lemmas above are sufficient to reconstruct a canonical rule from
its set of SE-models. The following definition sums up these results by introducing the
notion of a rule induced by a set of SE-interpretations:

Definition 11 (Rule Induced by a Set of SE-Interpretations).
Let S be a set of SE-interpretations.
An atom p is called an S-negative-body atom if every SE-interpretation 〈I, J〉 with

p ∈ J belongs to S. An atom p is called an S-positive-head atom if it is not an S-nega-
tive-body atom and every SE-interpretation 〈I, J〉 with p ∈ I belongs to S.

An atom p is called an S-positive-body atom if every SE-interpretation 〈I, J〉 with
p /∈ J belongs to S, and every SE-interpretation 〈I, J〉 with p /∈ I and J containing
some S-positive-head atom also belongs to S. An atom p is called an S-negative-head
atom if it is not an S-positive-body atom and every SE-interpretation 〈I, J〉 with p /∈ J
belongs to S.

The sets of all S-negative-body, S-positive-head, S-positive-body and S-nega-
tive-head atoms are denoted by B(S)−, H(S)+, B(S)+ and H(S)−, respectively. The
rule induced by S, denoted by rule(S), is defined as follows: If S = ISE, then rule(S)
is ε; otherwise, rule(S) is of the form

H(S)+;∼H(S)− ← B(S)+,∼B(S)−.

The main property of induced rules is that every canonical rule is induced by its
own set of SE-models and can thus be “reconstructed” from its set of SE-models. This
follows directly from Definition 11 and Lemmas 9 and 10.

Theorem 12. For every canonical rule r, rule(modSE (r)) = r.

This result, together with Theorem 7, has a number of consequences. First, for any
rule r, the canonical rule can(r) is induced by the set of SE-models of r.

Corollary 13. For every rule r, rule(modSE (r)) = can(r).

Furthermore, Theorem 12 directly implies that for two different canonical rules
r1, r2 we have rule(modSE (r1)) = r1 and rule(modSE (r2)) = r2, so modSE (r1) and
modSE (r2) must differ.

Corollary 14. No two different canonical rules are SE-equivalent.

Finally, the previous Corollary together with Theorem 7 imply that for every rule
there not only exists an SE-equivalent canonical rule, but this rule is also unique.

Corollary 15. Every rule is SE-equivalent to exactly one canonical rule.



3.3 Sets of SE-Interpretations Representable by a Rule

Naturally, not all sets of SE-interpretations correspond to a single rule, otherwise any
program could be reduced to a single rule. The conditions under which a set of SE-in-
terpretations is rule-representable are worth examining.

A set of SE-models S of a program is always well-defined, i.e. whenever S contains
〈I, J〉, it also contains 〈J, J〉. Moreover, for every well-defined set of SE-interpreta-
tions S there exists a program P such that S = modSE (P) [10].

We offer two approaches to find a similar condition for the class of rule-
representable sets of SE-interpretations. The first is based on induced rules defined in
the previous Subsection, while the second is formulated using lattice theory and is a
consequence of Lemma 8.

The first characterisation follows from two properties of the rule(·) transformation.
First, it can be applied to any set of SE-interpretations, even those that are not rule-
representable. Second, if rule(S) = r, then it holds that modSE (r) is a subset of S.

Lemma 16. The set of all SE-models of a canonical rule r is the least among all sets
of SE-interpretations S such that rule(S) = r.

Thus, to verify that S is rule-representable, it suffices to check that all interpretations
from S are models of rule(S).

The second characterisation follows from Lemma 8 which tells us that if S is rule-
representable, then its complement consists of SE-interpretations 〈I, J〉 following a
certain pattern. Their second component J always contains a fixed set of atoms and is
itself contained in another fixed set of atoms. Their first component I satisfies a similar
property, but only if a certain further condition is satisfied by J . More formally, for the
sets

I⊥ = B(r)+, I> = L \H(r)+, J⊥ = H(r)− ∪B(r)+, J> = L \B(r)−,

it holds that all SE-interpretations from the complement of S are of the form 〈I, J〉
where J⊥ ⊆ J ⊆ J> and either J ⊆ I> or I⊥ ⊆ I ⊆ I>. It turns out that this
also holds vice versa: if the complement of S satisfies the above property, then S is
rule-representable. Furthermore, to accentuate the particular structure that arises, we
can substitute the condition J⊥ ⊆ J ⊆ J> with saying that J belongs to a convex
sublattice of I.1 A similar substitution can be performed for I , yielding:

Theorem 17. Let S be a set of SE-interpretations. Then the following conditions are
equivalent:

1. The set of SE-interpretations S is rule-representable.
2. All SE-interpretations from S are SE-models of rule(S).
3. There exist convex sublattices L1, L2 of 〈I,⊆〉 such that the complement of S rel-

ative to ISE is equal to{
〈I, J〉 ∈ ISE

∣∣ I ∈ L1 ∧ J ∈ L2

}
∪
{
〈I, J〉 ∈ ISE

∣∣ J ∈ L1 ∩ L2

}
.

1 A sublattice L of L′ is convex if c ∈ L whenever a, b ∈ L and a ≤ c ≤ b holds in L′. For
more details see e.g. [22].



4 Discussion

The presented results mainly serve to facilitate the transition back and forth between
a rule and the set of its SE-models. They also make it possible to identify when a
given set of SE-models is representable by a single rule. We believe that in situations
where information on literal dependencies, expressed in individual rules, is essential
for defining operations on logic programs, the advantages of dealing with rules on the
level of semantics instead of on the level of syntax are significant. The semantic view
takes care of stripping away unnecessary details and since the introduced notions and
operators are defined in terms of semantic objects, it should be much easier to introduce
and prove their semantic properties.

These results can be used for example in the context of program updates to define an
update semantics based on the rule rejection principle [4] and operating on sets of sets
of SE-models. Such a semantics can serve as a bridge between syntax-based approaches
to rule updates, and the principles and semantic distance measures known from the area
of Belief Change. The next steps towards such a semantics involve a definition of the
notion of support for a literal by a set of SE-models (of a rule). Such a notion can then
foster a better understanding of desirable properties for semantic rule update operators.

On a different note, viewing a logic program as the set of sets of SE-models of rules
inside it leads naturally to the introduction of the following new notion of program
equivalence:

Definition 18 (Strong Rule Equivalence). Programs P1,P2 are SR-equivalent, de-
noted by P1 ≡SR P2, if

{modSE (r) | r ∈ P1 ∪ { ε } } = {modSE (r) | r ∈ P2 ∪ { ε } } .

Thus, two programs are SR-equivalent if they contain the same rules, modulo the
SE-model semantics. We add ε to each of the two programs in the definition so that
presence or absence of tautological rules in a program does not influence program
equivalence. SR-equivalence is stronger than strong equivalence, in the following
sense:

Definition 19 (Strength of Program Equivalence). Let ≡1,≡2 be equivalence rela-
tions on the set of all programs. We say that ≡1 is at least as strong as ≡2, denoted by
≡1�≡2, if P1 ≡1 P2 implies P1 ≡2 P2 for all programs P1,P2. We say that ≡1 is
stronger than ≡2, denoted by ≡1�≡2, if ≡1�≡2 but not ≡2�≡1.

Thus, using the notation of the above definition, we can write ≡SR�≡S, where ≡S

denotes the relation of strong equivalence. An example of programs that are strongly
equivalent, but not SR-equivalent is P = { p., q. } and Q = { p., q ← p. }, which in
many cases need to be distinguished from one another. We believe that this notion of
program equivalence is much more suitable for cases when the dependency information
contained in a program is of importance.

In certain cases, however, SR-equivalence may be too strong. For instance, it may
be desirable to treat programs such as P1 = { p← q. } and P2 = { p← q., p← q, r. }
in the same way because the extra rule inP2 is just a weakened version of the rule inP1.



For instance, the notion of update equivalence introduced in [23], which is based on a
particular approach to logic program updates, considers programs P1 and P2 as equiv-
alent because the extra rule in P2 cannot influence the result of any subsequent updates.
Since these programs are not SR-equivalent, we also introduce the following notion of
program equivalence, which in terms of strength falls between strong equivalence and
SR-equivalence.

Definition 20 (Strong Minimal Rule Equivalence). ProgramsP1,P2 are SMR-equiv-
alent, denoted by P1 ≡SMR P2, if

min {modSE (r) | r ∈ P1 ∪ { ε } } = min {modSE (r) | r ∈ P2 ∪ { ε } } ,

where minS denotes the set of subset-minimal elements of S.

In order for programs to be SMR-equivalent, they need not contain exactly the
same rules (modulo strong equivalence), it suffices if rules with subset-minimal sets of
SE-models are the same (again, modulo strong equivalence). Certain programs, such
as P1 and P2 above, are not SR-equivalent but they are still SMR-equivalent.

Related to this is the very strong notion of equivalence which was introduced in [2]:

Definition 21 (Strong Update Equivalence, c.f. Definition 4.1 in [2]). Two programs
P1, P1 are SU-equivalent, denoted by P1 ≡SU P2, if for any programs Q, R it holds
that the program ((P1\Q)∪R) has the same answer sets as the program ((P2\Q)∪R).

Two programs are strongly update equivalent only under very strict conditions –
it is shown in [2] that two programs are SU-equivalent if and only if their symmetric
difference contains only SE-tautological rules. This means that programs such asQ1 =
{∼p. }, Q2 = {← p. } and Q3 = {∼p← p. } are considered to be mutually non-
equivalent, even though the rules they contain are mutually SE-equivalent. This may be
seen as too sensitive to rule syntax.

The following result formally establishes the relations between the discussed no-
tions of program equivalence:

Theorem 22. SU-equivalence is stronger than SR-equivalence, which itself is
stronger than SMR-equivalence, which in turn is stronger than strong equivalence.
That is,

≡SU�≡SR�≡SMR�≡S .

The other notion of program equivalence introduced in [2], strong update equiva-
lence on common rules, or SUC-equivalence, is incomparable in terms of strength to
our new notions of equivalence. On the one hand, SR- and SMR-equivalent programs
such as {∼p. } and {∼p.,← p. } are not SUC-equivalent. On the other hand, programs
such as { p., q ← p. } and { q., p← q. } are neither SR- nor SMR-equivalent, but they
are SUC-equivalent. We believe that both of these examples are more appropriately
treated by the new notions of equivalence.

The introduction of canonical rules, which form a set of representatives of rule
equivalence classes induced by SE-models, also reveals the exact expressivity of
SE-model semantics with respect to a single rule. From their definition we can see that



SE-models are capable of distinguishing between any pair of rules, except for (1) a pair
of rules that only differ in the number of repetitions of literals in their heads and bodies;
(2) an integrity constraint and a rule whose head only contains negative literals. We
believe that in the former case, there is little reason to distinguish between such rules
and so the transition from rules to their SE-models has the positive effect of stripping
away of unnecessary details. However, the latter case has more serious consequences.
Although rules such as

∼p← q. and ← p, q.

are usually considered to carry the same meaning, some existing work suggests that they
should be treated differently – while the former rule gives a reason for atom p to become
false whenever q is true, the latter rule simply states that the two atoms cannot be true
at the same time, without specifying a way to resolve this situation if it were to arise [4,
8]. If we view a rule through the set of its SE-models, we cannot distinguish these two
kinds of rules anymore. Whenever this is important, either strong update equivalence is
used, which is perhaps too sensitive to the syntax of rules, or a new characterisation of
Answer-Set Programming needs to be discovered, namely one that is not based on the
logic of Here-and-There [16, 17].
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Proceedings of the 11th International Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 411–421, Sydney, Australia, September 16-19 2008. AAAI Press.

11. James P. Delgrande. A Program-Level Approach to Revising Logic Programs under the
Answer Set Semantics. Theory and Practice of Logic Programming, 26th Int’l. Conference
on Logic Programming Special Issue, 10(4-6):565–580, July 2010.

12. Peter Gärdenfors. Belief Revision, chapter Belief Revision: An Introduction, pages 1–28.
Cambridge University Press, 1992.

13. Martin Slota and João Leite. On semantic update operators for answer-set programs. In
Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proceedings of the 19th Euro-
pean Conference on Artificial Intelligence, volume 215 of Frontiers in Artificial Intelligence
and Applications, pages 957–962, Lisbon, Portugal, August 16-20 2010. IOS Press.

14. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming, pages 89–
148. Morgan Kaufmann, 1988.

15. Jürgen Dix. A classification theory of semantics of normal logic programs: II. Weak proper-
ties. Fundamenta Informaticae, 22(3):257–288, 1995.

16. Jan Łukasiewicz. Die Logik und das Grundlagenproblem. In Les Entretiens de Zürich sue les
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