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Abstract
Update semantics for Answer-Set Programming as-
sign models to sequences of answer-set programs
which result from the iterative process of updating
programs by programs. Each program in the se-
quence represents an update of the preceding ones.
One of the enduring problems in this context is
state condensing, or the problem of determining a
single logic program that faithfully represents the
sequence of programs. Such logic program should
1) be written in the same alphabet, 2) have the same
stable models, and 3) be equivalent to the sequence
of programs when subject to further updates.
It has been known for more than a decade that up-
date semantics easily lead to non-minimal stable
models, so an update sequence cannot be repre-
sented by a single non-disjunctive program. On the
other hand, more expressive classes of programs
were never considered, mainly because it was not
clear how they could be updated further.
In this paper we solve the state condensing problem
for two foundational rule update semantics, using
nested logic programs. Furthermore, we also show
that disjunctive programs with default negation in
the head can be used for the same purpose.

1 Introduction
The growing use of Answer-Set Programming [Gelfond and
Lifschitz, 1988; 1991] in dynamic domains calls more and
more urgently for plausible and efficient methods for incorpo-
rating new, possibly conflicting rules into an answer-set pro-
gram. Such methods are particularly important when dealing
with updates, i.e., when the newly introduced rules represent
a change that has occurred in the domain modelled by the
program.

Naturally, an update of an answer-set program should re-
sult in a new answer-set program that replaces the old one
and continues to be used in its place. In other words, the up-
date should be specified as a binary operator on some class of
∗Supported by Fundação para a Ciência e a Tecnologia under

project “ERRO – Efficient Reasoning with Rules and Ontologies”
(PTDC/EIA-CCO/121823/2010).

programs over the same alphabet, guaranteeing that updates
can be iterated if the need arises. However, despite the large
body of work on answer-set program updates, this fundamen-
tal requirement has been largely neglected in the literature.

For instance, the largest group of program update se-
mantics, based on the causal rejection principle [Leite and
Pereira, 1998; Alferes et al., 2000; Eiter et al., 2002; Alferes
et al., 2005], define stable models for sequences of non-
disjunctive programs where each program represents an up-
date of the preceding ones. However, since they sometimes
admit non-minimal models, which no non-disjunctive pro-
gram can capture, they must resort to the introduction of addi-
tional meta-level atoms in order to construct a single program
whose stable models correspond to the models assigned to the
sequence. This leads to difficulties with iterating the update
process.

A different approach in [Sakama and Inoue, 2003] deals
with program updates by borrowing ideas from literature on
belief revision and utilising an abductive framework to ac-
complish such updates. In this case, multiple alternative pro-
grams can be the result of an update and no mechanism is
provided to choose among them.

A somewhat similar situation occurs with the approach of
[Zhang, 2006] where intricate syntactic transformations are
combined with a semantics for prioritised logic programs that
ultimately leads to a set of logic programs. Since all of these
programs together represent the result of the update, it is once
again unclear how to construct a single program that com-
bines all of them.

The rule update semantics suggested in [Delgrande et al.,
2007] are also based on syntactic transformations into a logic
program with preferences among rules, but in contrast with
[Zhang, 2006], the semantics of such programs is defined by
directly specifying their preferred stable models and not by
translation into an ordinary program (or a set thereof). Thus,
although an actual syntactic object is constructed that repre-
sents the update, it needs to be interpreted in a richer formal-
ism to take into account preferences among rules.

Finally, frameworks that specify program updates by ma-
nipulating dependencies on default assumptions induced by
rules [Šefránek, 2006; 2011; Krümpelmann, 2012] are mainly
concerned with identifying the effects of irrelevant updates
and other theoretical properties of the stable models assigned
to a pair or sequence of programs. They do not consider rep-



resenting the result of an update by a single program.
In this paper, we unravel the true potential of specifying

updates as binary operators on some class of programs. De-
spite the fact that existing program update semantics do not
seem compatible with this point of view, we show that at least
some of them can be viewed in this manner.

In particular, we return to the foundational approaches to
rule updates based on causal rejection, the justified update se-
mantics [Leite and Pereira, 1998], (or JU-semantics for short)
as well as the closely related update answer set semantics
[Eiter et al., 2002] (or UA-semantics for short). For these,
we define binary update operators and show that applying the
operator to any sequence of programs produces a program
whose stable models coincide with the stable models assigned
to the original sequence under JU- and UA-semantics, respec-
tively. In this way, the new operator works as a way to con-
dense any sequence of non-disjunctive programs into a single
program that includes all relevant information about the se-
quence, not only to identify its stable models, but also for the
purpose of performing further updates. Thereby, we solve the
long-standing problem known as state condensing from the
literature on causal rejection semantics for program updates.

To achieve this, our operators must deal with a more gen-
eral class of programs than non-disjunctive ones. First we
define simple and elegant operators that produce nested logic
programs [Turner, 2003] with the required property. Subse-
quently, we show that the full expressivity of nested programs
is not necessary for this purpose by defining an additional pair
of operators that produce disjunctive logic programs, with
default negation in heads of rules to allow for non-minimal
stable models, and still maintain the same properties w.r.t.
JU- and UA-semantics. Nevertheless, the former operators
usually produce more readable programs, sometimes expo-
nentially more concise than the programs returned by the lat-
ter ones.

Furthermore, since the update semantics defined in
[Alferes et al., 2000; 2005] coincide with JU- and UA-seman-
tics on the class of acyclic programs [Homola, 2004], our re-
sults partially extend to those semantics as well.

The remainder of this paper is structured as follows: In
Sect. 2 we provide the necessary technical background for
our investigation. Section 3 introduces operators for condens-
ing an update sequence into a single nested program while
in Sect. 4 we refine the defined operators to work with the
more restricted class of disjunctive logic programs. Finally,
in Sect. 5 we discuss our findings in a broader context and
conclude.

2 Preliminaries
Throughout this paper we consider a fixed finite set of propo-
sitional atoms A. We adopt the syntax and stable model se-
mantics of logic programs with nested expressions [Turner,
2003], introduced next. Subsequently, we define the seman-
tics for program updates for which we develop condensing
operators in Sects. 3 and 4.

Programs with Nested Expressions
The set of objective literals L consists of all atoms p ∈ A
and their (strong) negations ¬p. The opposite literal to an ob-

jective literal l is denoted by −l and defined as follows: for
any atom p, −p = ¬p and −¬p = p. Elementary formulas
are objective literals and the 0-place connectives ⊥ (“false”)
and > (“true”). Formulas are built from elementary formu-
las using the unary connective not (default negation) and the
binary connectives ∧ and ∨.

A (nested) rule is an expression π of the form

h(π)← b(π)

where h(π) and b(π) are formulas, called the head and body
of π. A rule of the form h(π) ← > is usually identified with
the formula h(π). A (nested) program is a finite set of rules.

An interpretation is a consistent set of objective literals.
Satisfaction of a formula φ in an interpretation J , denoted by
J |= φ, is defined recursively as follows:

• For elementary φ, J |= φ if and only if φ ∈ J or φ = >;

• J |= φ1 ∧ φ2 if and only if J |= φ1 and J |= φ2;

• J |= φ1 ∨ φ2 if and only if J |= φ1 or J |= φ2;

• J |= not φ if and only if J 6|= φ.

Furthermore, J satisfies a rule π, denoted by J |= π, if J |=
b(π) implies J |= h(π), and J satisfies a program P, denoted
by J |= P, if J |= π for all π ∈ P.

The reduct of a formula φ relative to J , denoted by φJ ,
is obtained by replacing, in φ, every maximal occurrence of
a formula of the form not ψ with ⊥ if J |= ψ and with >
otherwise. The reducts of a rule π and of a program P are,
respectively,

πJ =
(
h(π)J ← b(π)J

)
and PJ =

{
πJ
∣∣ π ∈ P } .

Finally, J is a stable model of a program P if it is subset-
minimal among the interpretations that satisfy PJ .

Semantics for Program Updates
Causal rejection semantics for program updates assign stable
models to sequences of non-disjunctive programs. Their for-
mal introduction requires a few additional concepts first.

A default literal is a formula of the form not l where l ∈ L.
The set of all literals L∗ consists of all objective and default
literals. The complementary literal to a literal L is denoted by
L and defined as follows: for any objective literal l, l = not l
and not l = l.

We say that a rule is disjunctive if its body is either > or
a conjunction of literals and its head is a disjunction of liter-
als; non-disjunctive if its body is either > or a conjunction of
literals and its head is a literal. A program is disjunctive if
all its rules are disjunctive; non-disjunctive if all its rules are
non-disjunctive.

Now we can proceed with defining the JU-semantics [Leite
and Pereira, 1998] and UA-semantics [Eiter et al., 2002] for
program updates. Both semantics can be seen as formal em-
bodiments of the causal rejection principle which states that
every rule must remain in effect as long as it is not contra-
dicted by a newer rule. We define them in their generalised



forms, allowing for default negation in heads of rules [Leite,
2003].1

A dynamic logic program (DLP) is a finite sequence of
non-disjunctive programs. Given a DLP P , we denote by
all(P ) the set of all rules belonging to the programs in P .2

A conflict between rules occurs when the head literal of
one rule is the default or strong negation of the head literal
of the other rule. Similarly as in [Leite, 2003], we consider
the conflicts between an objective literal and its default nega-
tion as primary while conflicts between objective literals are
translated into a primary conflict by expanding the DLP ac-
cordingly. This expansion employs the coherence principle:
when an objective literal l is derived, its complement −l can-
not be concurrently true and thus not −l must be true. For-
mally, for a DLP P = 〈Pi〉i<n, the expanded version of P is
the DLP P ∗ = 〈P∗i 〉i<n where for every i < n,
P∗i = Pi ∪ { not −h(π)← b(π) | π ∈ Pi ∧ h(π) ∈ L } .

Furthermore, we say that rules π, σ are in conflict, denoted
by π 1 σ, if h(π) = h(σ).

The JU-semantics [Leite and Pereira, 1998] defines a set
of rejected rules, which depends on a stable model candidate,
and then verifies that the candidate is indeed a stable model
of the remaining rules.
Definition 1 (JU-Semantics [Leite and Pereira, 1998]). Let
P = 〈Pi〉i<n be a DLP and J an interpretation. The set of
rejected rules rej

JU
(P , J) contains all rules π ∈ Pi such that

for some rule σ ∈ Pj with j > i,
π 1 σ and J |= b(σ) .

The set [[P ]]JU of JU-models of a DLP P consists of all inter-
pretations J such that J is a stable model of the program

all(P ∗) \ rej
JU
(P ∗, J) .

Under the JU-semantics, a rule π is rejected if a more re-
cent rule σ is in conflict with π and the body of σ is satis-
fied in the stable model candidate J . The only difference in
the UA-semantics [Eiter et al., 2002] is that rejected rules are
prevented from rejecting other rules:
Definition 2 (UA-Semantics [Eiter et al., 2002]). Let P =
〈Pi〉i<n be a DLP and J an interpretation. The set of rejected
rules rej

UA
(P , J) contains all rules π ∈ Pi such that for some

rule σ ∈ Pj with j > i,

σ /∈ rej
UA
(P , J) and π 1 σ and J |= b(σ) .3

1Default negation in heads of rules enhances the expressivity
of the formalism as it allows us to express that an objective literal
should cease being true, distinguishing this case from the one where
the opposite literal must become true.

2In order to avoid issues with rules that are repeated in multiple
components of a DLP, we assume throughout this paper that every
rule is uniquely identified in all set-theoretic operations. This can be
formalised by assigning a unique name to each rule and performing
operations on names instead of the rules themselves. However, for
the sake of simplicity, we leave the technical realisation to the reader.

3Note that although this definition is recursive, the defined set is
unique. This is because we assume that every rule is uniquely iden-
tified and to determine whether a rule from Pi is rejected, the recur-
sion only refers to rejected rules from programs Pj with j strictly
greater than i. One can thus first find the rejected rules in Pn−1

(always ∅ by the definition), then those in Pn−2 and so on until P0.

The set [[P ]]UA of UA-models of a DLP P consists of all in-
terpretations J such that J is a stable model of the program

all(P ∗) \ rej
UA
(P ∗, J) .

The main difference between these semantics is that the
latter is more sensitive to irrelevant updates, such as an update
by a tautological rule that cannot indicate any change in the
modelled world because it is always satisfied. One example
that distinguishes the JU- and UA-semantics is the DLP

P 1 = 〈{ p } , {¬p } , { p← p }〉 (1)

for which the only JU-model is {¬p }, while, due to the pres-
ence of the last rule, the UA-semantics admits the additional
undesired model { p }.

3 Condensing into a Nested Program
Now that all technical preliminaries are covered, we can pro-
ceed with the definition of a state condensing operator for the
JU-semantics, and subsequently also for the UA-semantics.
More specifically, we will define binary operators ⊕JU and
⊕UA that take an original program and its update as arguments
and return the updated program. We naturally generalise any
such operator ⊕ to a sequence of programs P = 〈Pi〉i<n

inductively as follows:⊕
〈〉 = ∅ ,⊕

〈Pi〉i<n+1 =
(⊕

〈Pi〉i<n

)
⊕ Pn

The property that⊕JU and⊕UA must fulfill is that for any DLP
P , the stable models of the program

⊕
JU
P are exactly the

JU-models of P and, similarly, the stable models of the pro-
gram

⊕
UA
P are exactly the UA-models of P .

Both⊕JU and⊕UA are defined by utilising the concept of an
activation formula, which captures the condition under which
literal L is derived by some rule in a program U . Formally,
the activation formula for L in U is defined as follows:

αU (L) =
∨
{ b(π) | π ∈ U ∧ h(π) = L } .4

The operator⊕JU is based on the following simple idea: When
updating a program P by a program U , each rule π from P∗
with literal L in its head must be disabled when some rule
from U∗ for the literal complementary to L is activated. This
can be achieved by augmenting the body of π with the addi-
tional condition not αU∗

(
L
)
. Formally:

Definition 3 (Condensing operator ⊕JU). A JU-rule is a rule
with a single literal in its head and a JU-program is any set of
JU-rules.

The binary operator ⊕JU on the set of all JU-programs is
defined as follows: Given two JU-programs P and U , the
JU-program P ⊕JU U consists of the following rules:

1. for all π ∈ P∗, the rule

h(π)← b(π) ∧ not αU∗

(
h(π)

)
;

2. all rules in U∗.



p← not((not q ∧ not r) ∨ s) not ¬p
q ← p not ¬q ← p
r ← not > not ¬r
not p← not q ∧ not r ∧ not s not p← s ∧ not s
not r ← not r

p← s not ¬p← s s
r ← r not ¬r ← r not ¬s

Figure 1: The program
⊕

JU
〈P,U ,V〉

The following example illustrates the relationship between
the JU-semantics and the condensing operator ⊕JU, while the
subsequent theorem pinpoints the fact that it actually holds in
general.
Example 4. Suppose that programs P, U are as follows:

P : p U : not p← not q ∧ not r

q ← p not p← s

r not r

In addition to the rules from U∗ (which in this case coincides
with U), the program

⊕
JU
〈P,U〉 contains the following six

rules:5

p← not((not q ∧ not r) ∨ s) not ¬p
q ← p not ¬q ← p

r ← not > not ¬r
(2)

Also, the two stable models of
⊕

JU
〈P,U〉 are ∅ and { p, q },

and they coincide with the JU-models of the DLP 〈P,U〉.
Now consider that V contains the following three rules:

V : p← s r ← r s

The program
⊕

JU
〈P,U ,V〉 contains the following rules:

• the six rules listed in (2);
• the following rules, which originate in U :

not p← not q ∧ not r ∧ not s ,

not p← s ∧ not s ,

not r ← not r ;

• all rules in V∗.
The full program is also shown in Fig. 1. Its unique sta-
ble model is { p, q, s }, which coincides with the unique
JU-model of 〈P,U ,V〉.
Theorem 5 (State condensing using ⊕JU). Let P be a DLP.
An interpretation J is a JU-model of P if and only if it is a
stable model of

⊕
JU
P .

Thus, the single nested program P =
⊕

JU
P faithfully

represents P in the sense that it captures all information from
P that is relevant w.r.t. the JU-semantics: not only does it
have the required stable models, but any further updates of P
can be performed directly on P by applying the operator ⊕JU

and the obtained stable models will be the same.
4Note that

∨
∅ is simply ⊥.

5For the sake of readability, we omit the conjuncts > and not ⊥
in rule bodies.

p ∨ not q ← not s not ¬p
p ∨ not r ← not s not ¬q ← p
q ← p not ¬r
not p← not q ∧ not r ∧ not s not p← s ∧ not s
not r ← not r

p← s not ¬p← s s
r ← r not ¬r ← r not ¬s

Figure 2: The program
⊕∨

JU
〈P,U ,V〉

In case of the UA-semantics, a very similar operator can be
used to obtain the same result. The only difference is that for
a DLP P = 〈Pi〉i<n, in addition to the rules in

⊕
JU
P , the

program
⊕

UA
P will also contain the choice rule

h(π) ∨ h(π)← b(π)

for all i < n and every rule π ∈ Pi with h(π) ∈ L. In-
tuitively, these additional rules account for the differences in
the definition of rej

JU
(P , J) and rej

UA
(P , J). They make sure

that no rule is ever completely eliminated due to extra condi-
tions added to its body, but stays partially in effect by generat-
ing alternative worlds for the objective literal in its head: one
where it is satisfied and one where it is not. Essentially, this
means that whenever the original body of the rule is satisfied,
its head cannot be assumed false by default.

Definition 6 (Condensing operator ⊕UA). A UA-rule is a rule
with either a single literal or a disjunction of two literals L
and L in its head, and a UA-program is any set of UA-rules.

The binary operator ⊕UA on the set of all UA-programs is
defined as follows: Given two UA-programs P and U , the
UA-program P ⊕UA U consists of the following rules:

1. for all π ∈ P∗ with h(π) ∈ L∗, the rule

h(π)← b(π) ∧ not αU∗

(
h(π)

)
;

2. all π ∈ P such that h(π) is of the form L ∨ L;

3. for all π ∈ U with h(π) ∈ L, the rule

h(π) ∨ h(π)← b(π) ;

4. all rules in U∗.
Similarly as with the operator ⊕JU, we first illustrate the

inner workings of operator ⊕UA on an example, highlighting
its difference from ⊕JU as well as its relationship with the
UA-semantics, and then formally establish this relationship in
the general case.

Example 7. Consider again the programs P, U and V from
Example 4. Except for the rules in

⊕
JU
〈P,U〉, the program⊕

UA
〈P,U〉 also contains the following three rules:

p ∨ not p q ∨ not q ← p r ∨ not r (3)

Nevertheless, its stable models, ∅ and { p, q }, are the same as
those of

⊕
JU
〈P,U〉, and they also coincide with the UA-mod-

els of the DLP 〈P,U〉.



p← not((not q ∧ not r) ∨ s) not ¬p
q ← p not ¬q ← p
r ← not > not ¬r
p ∨ not p q ∨ not q ← p r ∨ not r

not p← not q ∧ not r ∧ not s not p← s ∧ not s
not r ← not r

p← s not ¬p← s s
r ← r not ¬r ← r not ¬s
p ∨ not p← s r ∨ not r ← r s ∨ not s

Figure 3: The program
⊕

UA
〈P,U ,V〉

The situation is more interesting after V is added to the
sequence. The resulting program

⊕
UA
〈P,U ,V〉 contains all

the rules in
⊕

JU
〈P,U ,V〉, the three rules listed in (3) and,

additionally, the following three rules:

p ∨ not p← s r ∨ not r ← r s ∨ not s

For reference, the entire program is also listed in Fig. 3.
Due to the last rule in (3), it has the extra stable model
{ p, q, r, s } in addition to the unique stable model { p, q, s }
of
⊕

JU
〈P,U ,V〉. These stable models also coincide with the

UA-models of the DLP 〈P,U ,V〉.
Theorem 8 (State condensing using ⊕UA). Let P be a DLP.
An interpretation J is a UA-model of P if and only if it is a
stable model of

⊕
UA
P .

As with the JU-semantics, the significance of this theorem
is in that the operator ⊕UA provides a full characterisation of
the UA-semantics: It can condense any given DLP P into
a single nested program P such that the stable models of P
coincide with the UA-models of P and any further updates on
top of P can be equivalently performed on P using ⊕UA.

4 Condensing into a Disjunctive Program
The condensing operators defined in the previous section can
be further modified in order to produce a program that meets
certain additional requirements. In the present section we
show that nested expressions can be completely eliminated
from the resulting program while still preserving the same
tight relationship with the original program update seman-
tics. Thus, we introduce a new pair of operators, ⊕∨JU and
⊕∨UA, that operate on disjunctive programs with default nega-
tion in heads of rules. Note that due to the non-minimality of
JU- and UA-models for certain DLPs, disjunctive programs
without default negation in heads of rules would already be
insufficient for this purpose.

The ideas underlying the new operators are fairly straight-
forward. Essentially, nested expressions are introduced into
the resulting programs only by the negations of activation for-
mulas in their bodies, so these are the parts of rules that need
to be translated into conjunctions in bodies and disjunctions
in heads of rules. In particular, by utilising De Morgan’s law
and distributivity of conjunction over disjunction, we can ob-
tain a new formula, a disjunction of conjunctions of default
literals and double-negated objective literals, that is strongly

p← q ∧ not s not ¬p
p← r ∧ not s not ¬q ← p
q ← p not ¬r
p ∨ not p q ∨ not q ← p r ∨ not r

not p← not q ∧ not r ∧ not s not p← s ∧ not s
not r ← not r

p← s not ¬p← s s
r ← r not ¬r ← r not ¬s
p ∨ not p← s r ∨ not r ← r s ∨ not s

Figure 4: The program
⊕∨

UA
〈P,U ,V〉

equivalent to the original formula. For instance, in case of
the first rule in (2), we can equivalently write the condition
not((not q ∧ not r) ∨ s) as

(not not q ∧ not s) ∨ (not not r ∧ not s) .

Then it suffices to break up the resulting rule into multiple
rules, each with one of the disjuncts of this formula in the
body, and remove one of the negations from each double-
negated literals and “move” it into the head of the newly con-
structed rule. In case of the first rule in (2), the result would
be the following two disjunctive rules:

p ∨ not q ← not s p ∨ not r ← not s (4)

Formally, we call the set of literals, without double nega-
tion, within each of the disjuncts described above a blocking
set. Given a non-disjunctive program U and a literal L, if the
formula αU (L) contains > as one of its disjuncts, then there
is no blocking set for L in U . Otherwise, suppose that αU (L)
is the formula

(L1
1 ∧ · · · ∧ L1

k1
) ∨ · · · ∨ (Ln

1 ∧ · · · ∧ Ln
kn
) .

A blocking set for L in U is any set of literals{
L1
i1
, . . . , Ln

in

}
where 1 ≤ ij ≤ kj for every j with 1 ≤ j ≤ n. We denote
the set of all blocking sets for L in U by βU (L). Also, for any
set of literals S,

S+ = { l ∈ L | l ∈ S } ,

S− = { l ∈ L | not l ∈ S } ,

not S = { not l | l ∈ S } .

Each nested rule

h(π)← b(π) ∧ not αU∗(h(π)) ,

can thus be replaced by a set of disjunctive rules

h(π) ∨
∨

not S+ ← b(π) ∧
∧

not S−

where S ∈ βU∗

(
h(π)

)
. Furthermore, when h(π) is a default

literal, it is more convenient to move the new default literals
from the head into the body since this operation preserves
stable models [Inoue and Sakama, 1998] and makes it easier
to pinpoint the original head literal in the rule. This leads us
to the following definition of ⊕∨JU:



Definition 9 (Condensing operator ⊕∨JU). The binary opera-
tor ⊕∨JU on the set of all disjunctive programs is defined as
follows: Given two disjunctive programs P and U , the dis-
junctive program P ⊕∨JU U consists of the following rules:

1. for all π ∈ P∗ such that for some l ∈ L, either h(π) = l
or l is the unique non-negated disjunct of h(π), and all
S ∈ βU∗(not l), the rule

h(π) ∨
∨

not S+ ← b(π) ∧
∧

not S− ;

2. for all π ∈ P∗ such that for some l ∈ L, h(π) = not l,
and all S ∈ βU∗(l), the rule

h(π)← b(π) ∧
∧
S+ ∧

∧
not S− ;

3. all rules in U∗.
If we consider the programs P, U and V from Example 4,

the disjunctive program
⊕∨

JU
〈P,U ,V〉 differs from the nested

one in two points: 1) its only nested rule is turned into the
two disjunctive rules in (4), and 2) the rule r ← not > is
completely eliminated because its body is never satisfied and,
formally, there is no blocking set for not r in U . For compar-
ison, Fig. 2 includes a listing of the rules in

⊕∨
JU
〈P,U ,V〉.

The operator ⊕∨JU preserves the main property of ⊕JU.
Theorem 10 (State condensing using ⊕∨JU). Let P be a DLP.
An interpretation J is a JU-model of P if and only if it is a
stable model of

⊕∨
JU
P .

As for the UA-semantics, analogical modifications can be
applied in the definition of⊕UA to obtain an operator that pro-
duces a disjunctive program. Furthermore, due to the addi-
tional choice rules included in the result, the rules can be fur-
ther simplified, when compared to the rules produced by ⊕∨JU.
In particular, the first group of rules can be treated the same
way as the second, leading to the following definition of ⊕∨UA:
Definition 11 (Condensing operator ⊕∨UA). The binary oper-
ator ⊕∨UA on the set of all disjunctive programs is defined as
follows: Given two disjunctive programs P and U , the dis-
junctive program P ⊕∨UA U consists of the following rules:

1. for all π ∈ P∗ with h(π) ∈ L∗ and all S ∈ βU∗

(
h(π)

)
,

the rule

h(π)← b(π) ∧
∧
S+ ∧

∧
not S− ;

2. all π ∈ P such that h(π) is of the form L ∨ L;
3. for all π ∈ U with h(π) ∈ L, the rule

h(π) ∨ h(π)← b(π) ;

4. all rules in U∗.
Returning to the programs P, U and V from Exam-

ple 4, the differences between programs
⊕∨

UA
〈P,U ,V〉 and⊕

UA
〈P,U ,V〉 are similar to those between

⊕∨
JU
〈P,U ,V〉 and⊕

JU
〈P,U ,V〉 and the rules of

⊕∨
UA
〈P,U ,V〉 are listed in

Fig. 4. Also, ⊕∨UA preserves the main property of ⊕UA.
Theorem 12 (State condensing using ⊕∨UA). Let P be a DLP.
An interpretation J is a UA-model of P if and only if it is a
stable model of

⊕∨
UA
P .

Although operators⊕∨JU and⊕∨UA eliminate the necessity for
using nested rules to condense a DLP into a single program,
this comes at a cost. Namely, the size of the nested program
resulting from applying operators ⊕JU and ⊕UA is always lin-
ear in size of the argument programs, while in case of ⊕∨JU
and ⊕∨UA, the resulting program can be exponentially larger.
Furthermore, Figs. 1 to 4 suggest that the representations pro-
duced by ⊕∨JU and ⊕∨UA will be less faithful to the form of the
rules in the original programs, and thus less readable. This
indicates that the nested program is more suitable as a way
to store the condensed program, both in terms of space and
readability. Additionally, in order to find its stable models, a
more efficient translation can be used that utilises additional
atoms to prevent the exponential explosion. However, such
a translation will no longer be equivalent to the original pro-
gram sequence w.r.t. performing further updates.

5 Discussion
Defining update operators for answer-set programs that ac-
tually produce an answer-set program written in the same al-
phabet has been a long enduring problem, also known as state
condensing, i.e., condensing a sequence of answer-set pro-
grams – interpreted as updates – into a single answer set pro-
gram. Existing semantics typically proceed by characterising
the models of the update and, at most, either describe a set of
answer-set programs that could represent the update, instead
of only one, or produce an answer-set program written in a
language extended with a considerable amount of new atoms,
making it difficult to understand and to further update.

Part of the problems emerge because some semantics em-
ploy complex mechanisms such as preferences or other mini-
mality criteria that make it impossible to encode the result in a
single answer-set program, while others have model-theoretic
characterisations that assign non-minimal models to certain
update sequences, and it is well known that stable models of
non-disjunctive answer-set programs are minimal.

In this paper we addressed and solved the problem of state
condensing for two of the most relevant semantics for up-
dates, by resorting to more expressive classes of answer-set
programs, namely nested and disjunctive. In all four cases,
two for each semantics using both classes of answer-set pro-
grams, the resulting program is written with the same alpha-
bet and is ready to be further updated. We have illustrated
with some examples that the resulting programs written using
nested answer-set programming are perhaps more readable
than those written using disjunctive answer-set programs, in
the sense that they more closely match the intuitions underly-
ing the semantics for updates that we consider.

A similar approach to answer-set program updates has pre-
viously been considered by Osorio and Cuevas [2007] but the
possibility of performing iterated updates has not been ex-
plored. This work is also related to our work on semantic rule
updates [Slota and Leite, 2010; 2012a] where state condens-
ing is taken as one of the basic characteristics of rule updates,
making it possible to relate them more directly with classi-
cal belief update principles and semantics [Slota and Leite,
2012b]. In the future, it would also be interesting to look for
condensing operators for other rule update semantics.
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